[image: image1.png][image: image2.png][image: image3.png]
Regression with Stata
Chapter 3 - Regression with Categorical Predictors

Chapter Outline
 3.0 Regression with Categorical Predictors
 3.1 Regression with a 0/1 variable
 3.2 Regression with a 1/2 variable
 3.3 Regression with a 1/2/3 variable
 3.4 Regression with multiple categorical predictors
 3.5 Categorical predictor with interactions
 3.6 Continuous and Categorical variables
 3.7 Interactions of Continuous by 0/1 Categorical variables
 3.8 Continuous and Categorical variables, interaction with 1/2/3 variable
 3.9 Summary
 3.10 Self assessment
 3.11 For more information

3.0 Introduction

In the previous two chapters, we have focused on regression analyses using continuous variables. However, it is possible to include categorical predictors in a regression analysis, but it requires some extra work in performing the analysis and extra work in properly interpreting the results. This chapter will illustrate how you can use Stata for including categorical predictors in your analysis and describe how to interpret the results of such analyses. Stata has some great tools that really ease the process of including categorical variables in your regression analysis, and we will emphasize the use of these timesaving tools.

This chapter will use the elemapi2 data that you have seen in the prior chapters. We will focus on four variables api00, some_col, yr_rnd and mealcat, which takes meals and breaks it up into 3 categories. Let's have a quick look at these variables.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2

describe api00 some_col yr_rnd mealcat
 storage display value

variable name type format label variable label

api00 int %6.0g api 2000

some_col byte %4.0f parent some college

yr_rnd byte %4.0f yr_rnd year round school

mealcat byte %18.0g mealcat Percentage free meals in 3

 categories

The variable api00 is a measure of the performance of the schools. Below we see the codebook information for api00

codebook api00
api00 -- api 2000

 type: numeric (int)

 range: [369,940] units: 1

 unique values: 271 coded missing: 0 / 400

 mean: 647.622

 std. dev: 142.249

 percentiles: 10% 25% 50% 75% 90%

 465.5 523.5 643 762.5 850

The variable some_col is a continuous variable that measures the percentage of the parents in the school who have attended college, and the codebook information is shown below.

codebook some_col
some_col -- parent some college

 type: numeric (byte)

 range: [0,67] units: 1

 unique values: 49 coded missing: 0 / 400

 mean: 19.7125

 std. dev: 11.3369

 percentiles: 10% 25% 50% 75% 90%

 2.5 12 19 28 34

The variable yr_rnd is a categorical variable that is coded 0 if the school is not year round, and 1 if year round, see below.

codebook yr_rnd
yr_rnd -- year round school

 type: numeric (byte)

 label: yr_rnd

 range: [0,1] units: 1

 unique values: 2 coded missing: 0 / 400

 tabulation: Freq. Numeric Label

 308 0 No

 92 1 Yes

The variable meals is the percentage of students who are receiving state sponsored free meals and can be used as an indicator of poverty. This was broken into 3 categories (to make equally sized groups) creating the variable mealcat. The codebook information for mealcat is shown below.

codebook mealcat
mealcat --- (unlabeled)

 type: numeric (float)

 label: mealcat

 range: [1,3] units: 1

 unique values: 3 coded missing: 0 / 400

 tabulation: Freq. Numeric Label

 131 1 0-46% free meals

 132 2 47-80% free meals

 137 3 81-100% free meals

3.1 Regression with a 0/1 variable

The simplest example of a categorical predictor in a regression analysis is a 0/1 variable, also called a dummy variable. Let's use the variable yr_rnd as an example of a dummy variable. We can include a dummy variable as a predictor in a regression analysis as shown below.

regress api00 yr_rnd
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(1, 398) = 116.24

 Model | 1825000.56 1 1825000.56 Prob > F = 0.0000

 Residual | 6248671.43 398 15700.1795 R-squared = 0.2260

-------------+------------------------------ Adj R-squared = 0.2241

 Total | 8073672.00 399 20234.7669 Root MSE = 125.30

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 yr_rnd | -160.5064 14.8872 -10.78 0.000 -189.7737 -131.239

 _cons | 684.539 7.13965 95.88 0.000 670.5028 698.5751

--

This may seem odd at first, but this is a legitimate analysis. But what does this mean? Let's go back to basics and write out the regression equation that this model implies.

api00 = _cons + Byr_rnd * yr_rnd

where _cons is the intercept (or constant) and we use Byr_rnd to represent the coefficient for variable yr_rnd. Filling in the values from the regression equation, we get

api00 = 684.539 + -160.5064 * yr_rnd

If a school is not a year-round school (i.e. yr_rnd is 0) the regression equation would simplify to

api00 = constant + 0 * Byr_rnd

api00 = 684.539 + 0 * -160.5064

api00 = 684.539

If a school is a year-round school, the regression equation would simplify to

api00 = constant + 1 * Byr_rnd

api00 = 684.539 + 1 * -160.5064

api00 = 524.0326

We can graph the observed values and the predicted values using the scatter command as shown below. Although yr_rnd only has 2 values, we can still draw a regression line showing the relationship between yr_rnd and api00. Based on the results above, we see that the predicted value for non-year round schools is 684.539 and the predicted value for the year round schools is 524.032, and the slope of the line is negative, which makes sense since the coefficient for yr_rnd was negative (-160.5064).

twoway (scatter api00 yr_rnd) (lfit api00 yr_rnd)
[image: image4.png]
Let's compare these predicted values to the mean api00 scores for the year-round and non-year-round schools.

tabulate yr_rnd, sum(api00)
 year round | Summary of api 2000

 school | Mean Std. Dev. Freq.

------------+------------------------------------

 No | 684.53896 132.11253 308

 Yes | 524.03261 98.916043 92

------------+------------------------------------

 Total | 647.6225 142.24896 400

As you see, the regression equation predicts that the value of api00 will be the mean value, depending on whether a school is a year round school or non-year round school.

Let's relate these predicted values back to the regression equation. For the non-year-round schools, their mean is the same as the intercept (684.539). The coefficient for yr_rnd is the amount we need to add to get the mean for the year-round schools, i.e., we need to add -160.5064 to get 524.0326, the mean for the non year-round schools. In other words, Byr_rnd is the mean api00 score for the year-round schools minus the mean api00 score for the non year-round schools, i.e., mean(year-round) - mean(non year-round).

It may be surprising to note that this regression analysis with a single dummy variable is the same as doing a t-test comparing the mean api00 for the year-round schools with the non year-round schools (see below). You can see that the t value below is the same as the t value for yr_rnd in the regression above. This is because Byr_rnd compares the year-rounds and non year-rounds (since the coefficient is mean(year round)-mean(non year-round)).

ttest api00, by(yr_rnd)
Two-sample t test with equal variances

--

 Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--

 No | 308 684.539 7.52781 132.1125 669.7263 699.3516

 Yes | 92 524.0326 10.31271 98.91604 503.5477 544.5175

---------+--

combined | 400 647.6225 7.112448 142.249 633.6399 661.6051

---------+--

 diff | 160.5064 14.8872 131.239 189.7737

--

Degrees of freedom: 398

 Ho: mean(No) - mean(Yes) = diff = 0

 Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0

 t = 10.7815 t = 10.7815 t = 10.7815

 P < t = 1.0000 P > |t| = 0.0000 P > t = 0.0000

Since a t-test is the same as doing an anova, we can get the same results using the anova command as well.

anova api00 yr_rnd
 Number of obs = 400 R-squared = 0.2260

 Root MSE = 125.30 Adj R-squared = 0.2241

 Source | Partial SS df MS F Prob > F

 -----------+--

 Model | 1825000.56 1 1825000.56 116.24 0.0000

 |

 yr_rnd | 1825000.56 1 1825000.56 116.24 0.0000

 |

 Residual | 6248671.43 398 15700.1795

 -----------+--

 Total | 8073672.00 399 20234.7669

If we square the t-value from the t-test, we get the same value as the F-value from the anova.

di 10.7815^2
116.24074

3.2 Regression with a 1/2 variable

A categorical predictor variable does not have to be coded 0/1 to be used in a regression model. It is easier to understand and interpret the results from a model with dummy variables, but the results from a variable coded 1/2 yield essentially the same results.

Lets make a copy of the variable yr_rnd called yr_rnd2 that is coded 1/2, 1=non year-round and 2=year-round.

generate yr_rnd2=yr_rnd

recode yr_rnd2 0=1 1=2
(400 changes made)

Let's perform a regression predicting api00 from yr_rnd2.

regress api00 yr_rnd2
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(1, 398) = 116.24

 Model | 1825000.56 1 1825000.56 Prob > F = 0.0000

 Residual | 6248671.43 398 15700.1795 R-squared = 0.2260

-------------+------------------------------ Adj R-squared = 0.2241

 Total | 8073672.00 399 20234.7669 Root MSE = 125.30

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 yr_rnd2 | -160.5064 14.8872 -10.78 0.000 -189.7737 -131.239

 _cons | 845.0453 19.35336 43.66 0.000 806.9977 883.0929

--

Note that the coefficient for yr_rnd is the same as yr_rnd2. So, you can see that if you code yr_rnd as 0/1 or as 1/2, the regression coefficient works out to be the same. However the intercept (_cons) is a bit less intuitive. When we used yr_rnd, the intercept was the mean for the non year-rounds. When using yr_rnd2, the intercept is the mean for the non year-rounds minus Byr_rnd2, i.e., 684.539 - (-160.506) = 845.045

Note that you can use 0/1 or 1/2 coding and the results for the coefficient come out the same, but the interpretation of the constant in the regression equation is different. It is often easier to interpret the estimates for 0/1 coding.

In summary, these results indicate that the api00 scores are significantly different for the schools depending on the type of school, year round school vs. non-year round school. Non year-round schools have significantly higher API scores than year-round schools. Based on the regression results, non year- round schools have scores that are 160.5 points higher than year- round schools.

3.3 Regression with a 1/2/3 variable

3.3.1 Manually Creating Dummy Variables

Say, that we would like to examine the relationship between the amount of poverty and api scores. We don't have a measure of poverty, but we can use mealcat as a proxy for a measure of poverty. Below we repeat the codebook info for mealcat showing the values for the three categories.

codebook mealcat
mealcat --- (unlabeled)

 type: numeric (float)

 label: mealcat

 range: [1,3] units: 1

 unique values: 3 coded missing: 0 / 400

 tabulation: Freq. Numeric Label

 131 1 0-46% free meals

 132 2 47-80% free meals

 137 3 81-100% free meals

You might be tempted to try including mealcat in a regression like this.

regress api00 mealcat
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(1, 398) = 1207.74

 Model | 6072527.52 1 6072527.52 Prob > F = 0.0000

 Residual | 2001144.48 398 5028.0012 R-squared = 0.7521

-------------+------------------------------ Adj R-squared = 0.7515

 Total | 8073672.00 399 20234.7669 Root MSE = 70.908

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 mealcat | -150.5533 4.332147 -34.75 0.000 -159.0701 -142.0365

 _cons | 950.9874 9.421798 100.93 0.000 932.4647 969.5101

--

But this is looking at the linear effect of mealcat with api00, but mealcat is not an interval variable. Instead, you will want to code the variable so that all the information concerning the three levels is accounted for. You can dummy code mealcat like this.

tabulate mealcat, gen(mealcat)
 mealcat | Freq. Percent Cum.

-------------------+-----------------------------------

 0-46% free meals | 131 32.75 32.75

 47-80% free meals | 132 33.00 65.75

81-100% free meals | 137 34.25 100.00

-------------------+-----------------------------------

 Total | 400 100.00

We now have created mealcat1 that is 1 if mealcat is 1, and 0 otherwise. Likewise, mealcat2 is 1 if mealcat is 2, and 0 otherwise and likewise mealcat3 was created. We can see this below.

list mealcat mealcat1 mealcat2 mealcat3 in 1/10, nolabel
 mealcat mealcat1 mealcat2 mealcat3

 1. 1 1 0 0

 2. 2 0 1 0

 3. 3 0 0 1

 4. 1 1 0 0

 5. 1 1 0 0

 6. 1 1 0 0

 7. 1 1 0 0

 8. 1 1 0 0

 9. 1 1 0 0

 10. 1 1 0 0

We can now use two of these dummy variables (mealcat2 and mealcat3) in the regression analysis.

regress api00 mealcat2 mealcat3
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(2, 397) = 611.12

 Model | 6094197.67 2 3047098.83 Prob > F = 0.0000

 Residual | 1979474.33 397 4986.08143 R-squared = 0.7548

-------------+------------------------------ Adj R-squared = 0.7536

 Total | 8073672.00 399 20234.7669 Root MSE = 70.612

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 mealcat2 | -166.3236 8.708331 -19.10 0.000 -183.4438 -149.2034

 mealcat3 | -301.338 8.628815 -34.92 0.000 -318.3019 -284.3741

 _cons | 805.7176 6.169416 130.60 0.000 793.5887 817.8464

--

We can test the overall differences among the three groups by using the test command as shown below. This shows that the overall differences among the three groups are significant.

test mealcat2 mealcat3
 (1) mealcat2 = 0.0

 (2) mealcat3 = 0.0

 F(2, 397) = 611.12

 Prob > F = 0.0000

The interpretation of the coefficients is much like that for the binary variables. Group 1 is the omitted group, so _cons is the mean for group 1. The coefficient for mealcat2 is the mean for group 2 minus the mean of the omitted group (group 1). And the coefficient for mealcat3 is the mean of group 3 minus the mean of group 1. You can verify this by comparing the coefficients with the means of the groups.

tabulate mealcat, summarize(api00)
 | Summary of api 2000

 mealcat | Mean Std. Dev. Freq.

------------+------------------------------------

 0-46% fre | 805.71756 65.668664 131

 47-80% fr | 639.39394 82.13513 132

 81-100% f | 504.37956 62.727015 137

------------+------------------------------------

 Total | 647.6225 142.24896 400

Based on these results, we can say that the three groups differ in their api00 scores, and that in particular group2 is significantly different from group1 (because mealcat2 was significant) and group 3 is significantly different from group 1 (because mealcat3 was significant).

3.3.2 Using the xi command

We can use the xi command to do the work for us to create the indicator variables and run the regression all in one command, as shown below.

xi : regress api00 i.mealcat
i.mealcat _Imealcat_1-3 (naturally coded; _Imealcat_1 omitted)

 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(2, 397) = 611.12

 Model | 6094197.67 2 3047098.83 Prob > F = 0.0000

 Residual | 1979474.33 397 4986.08143 R-squared = 0.7548

-------------+------------------------------ Adj R-squared = 0.7536

 Total | 8073672.00 399 20234.7669 Root MSE = 70.612

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _Imealcat_2 | -166.3236 8.708331 -19.10 0.000 -183.4438 -149.2034

 _Imealcat_3 | -301.338 8.628815 -34.92 0.000 -318.3019 -284.3741

 _cons | 805.7176 6.169416 130.60 0.000 793.5887 817.8464

--

When we use xi and include the term i.mealcat in the model, Stata creates the variables _Imealcat_2 and _Imealcat_3 that are dummy variables just like mealcat2 and mealcat3 that we created before. There really is no difference between mealcat2 and _Imealcat_2.

As you can see, the results are the same as in the prior analysis. If we want to test the overall effect of mealcat we use the test command as shown below, which also gives us the same results as we found using the dummy variables mealcat2 and mealcat3.

test _Imealcat_2 _Imealcat_3
 (1) _Imealcat_2 = 0.0

 (2) _Imealcat_3 = 0.0

 F(2, 397) = 611.12

 Prob > F = 0.0000

Note that if you are doing this in Stata version 6 the variables would be named Imealc_2 and Imealc_3 instead of _Imealcat_2 and _Imealcat_3. One of the improvements in Stata 7 is that variable names can be longer than 8 characters, so the names of the variables created by the xi command are easier to understand than in version 6. From this point forward, we will use the variable names that would be created in version 7.

What if we wanted a different group to be the reference group? If we create dummy variables via tabulate , generate() then we can easily choose which variable will be the omitted group, for example, let's omit group 3.

regress api00 mealcat1 mealcat2
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(2, 397) = 611.12

 Model | 6094197.67 2 3047098.83 Prob > F = 0.0000

 Residual | 1979474.33 397 4986.08143 R-squared = 0.7548

-------------+------------------------------ Adj R-squared = 0.7536

 Total | 8073672.00 399 20234.7669 Root MSE = 70.612

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 mealcat1 | 301.338 8.628815 34.92 0.000 284.3741 318.3019

 mealcat2 | 135.0144 8.61209 15.68 0.000 118.0834 151.9454

 _cons | 504.3796 6.032807 83.61 0.000 492.5193 516.2398

--

With group 3 omitted, the constant is now the mean of group 3 and mealcat1 is group1-group3 and mealcat2 is group2-group3. We see that both of these coefficients are significant, indicating that group 1 is significantly different from group 3 and group 2 is significantly different from group 3.

When we use the xi command, how can we choose which group is the omitted group? By default, the first group is omitted, but say we want group 3 to be omitted. We can use the char command as shown below to tell Stata that we want the third group to be the omitted group for the variable mealcat.

char mealcat[omit] 3
Then, when we use the xi command using mealcat the mealcat=3 group will be omitted. If you save the data file, Stata will remember this for future Stata sessions.

xi : regress api00 i.mealcat
i.mealcat _Imealcat_1-3 (naturally coded; _Imealcat_3 omitted)

 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(2, 397) = 611.12

 Model | 6094197.67 2 3047098.83 Prob > F = 0.0000

 Residual | 1979474.33 397 4986.08143 R-squared = 0.7548

-------------+------------------------------ Adj R-squared = 0.7536

 Total | 8073672.00 399 20234.7669 Root MSE = 70.612

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _Imealcat_1 | 301.338 8.628815 34.92 0.000 284.3741 318.3019

 _Imealcat_2 | 135.0144 8.61209 15.68 0.000 118.0834 151.9454

 _cons | 504.3796 6.032807 83.61 0.000 492.5193 516.2398

--

You can compare and see that these results are identical to those found using mealcat1 and mealcat2 as predictors.

3.3.3 Using the anova command

We can also do this analysis using the anova command. The benefit of the anova command is that it gives us the test of the overall effect of mealcat without needing to subsequently use the test command as we did with the regress command.

anova api00 mealcat
 Number of obs = 400 R-squared = 0.7548

 Root MSE = 70.6122 Adj R-squared = 0.7536

 Source | Partial SS df MS F Prob > F

 -----------+--

 Model | 6094197.67 2 3047098.83 611.12 0.0000

 |

 mealcat | 6094197.67 2 3047098.83 611.12 0.0000

 |

 Residual | 1979474.33 397 4986.08143

 -----------+--

 Total | 8073672.00 399 20234.7669

We can see the anova test of the effect of mealcat is the same as the test command from the regress command.

We can even follow this with the anova, regress command and compare the parameter estimates with those we performed previously.

anova, regress
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(2, 397) = 611.12

 Model | 6094197.67 2 3047098.83 Prob > F = 0.0000

 Residual | 1979474.33 397 4986.08143 R-squared = 0.7548

-------------+------------------------------ Adj R-squared = 0.7536

 Total | 8073672.00 399 20234.7669 Root MSE = 70.612

--

 api00 Coef. Std. Err. t P>|t| [95% Conf. Interval]

--

_cons 504.3796 6.032807 83.61 0.000 492.5193 516.2398

mealcat

 1 301.338 8.628815 34.92 0.000 284.3741 318.3019

 2 135.0144 8.61209 15.68 0.000 118.0834 151.9454

 3 (dropped)

--

Note: the parameter estimates are the same because mealcat is coded the same way in the regress command and in the anova command, in both cases the last category (category 3) being dropped. While you can control which category is the omitted category when you use the regress command, the anova, regress command always drops the last category.

3.3.4 Other coding schemes

It is generally very convenient to use dummy coding but that is not the only kind of coding that can be used. As you have seen, when you use dummy coding one of the groups becomes the reference group and all of the other groups are compared to that group. This may not be the most interesting set of comparisons.

Say you want to compare group 1 with groups 2 and 3, and for a second comparison compare group 2 with group 3. You need to generate a coding scheme that forms these 2 comparisons. Fortunately, there is a Stata program that you can download called xi3 (an enhanced version of xi) that will create the variables you would need for such comparisons (as well as a variety of other common comparisons). You can download xi3 from within Stata by typing findit xi3 (see How can I used the findit command to search for programs and get additional help? for more information about using findit).

The comparisons that we have described (comparing group 1 with 2 and 3, and then comparing groups 2 and 3) correspond to Helmert comparisons (see Chapter 5 for more details). We use the h. prefix (instead of the i. prefix) to indicate that we desire Helmert comparisons on the variable mealcat. Otherwise, you see that xi3 works much like the xi command.

xi3: regress api00 h.mealcat

h.mealcat _Imealcat_1-3 (naturally coded; _Imealcat_3 omitted)

 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(2, 397) = 611.12

 Model | 6094197.67 2 3047098.83 Prob > F = 0.0000

 Residual | 1979474.33 397 4986.08143 R-squared = 0.7548

-------------+------------------------------ Adj R-squared = 0.7536

 Total | 8073672.00 399 20234.7669 Root MSE = 70.612

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _Imealcat_1 | 233.8308 7.523544 31.08 0.000 219.0398 248.6218

 _Imealcat_2 | 135.0144 8.61209 15.68 0.000 118.0834 151.9454

 _cons | 649.8304 3.531285 184.02 0.000 642.888 656.7727

--

If you compare the parameter estimates with the means (see below) you can verify that the coefficient for _Imealcat_1 is the mean of group 1 minus the mean of groups 2 and 3 (805.71756 - (639.39394 + 504.37956) / 2 = 233.83081) and the coefficient for _Imealcat_2 is the mean of group 2 minus group 3 (639.39 - 504.37 = 135.01). Both of these comparisons are significant, indicating that group 1 differs significantly from groups 2 and 3 combined, and group 2 differs significantly from group 3.

tabulate mealcat, sum(api00)
 | Summary of api 2000

 mealcat | Mean Std. Dev. Freq.

------------+------------------------------------

 0-46% fre | 805.71756 65.668664 131

 47-80% fr | 639.39394 82.13513 132

 81-100% f | 504.37956 62.727015 137

------------+------------------------------------

 Total | 647.6225 142.24896 400

And the value of _cons is the unweighted average of the means of the 3 groups.

display (805.71756 +639.39394 +504.37956)/3
649.83035

Using the coding scheme provided by xi3, we were able to form perhaps more interesting tests than those provided by dummy coding. The xi3 program can create variables according to other coding schemes, as well as custom coding schemes that you create, see help xi3 and Chapter 5 for more information.

3.4 Regression with two categorical predictors
3.4.1 Using the xi: command
Previously we looked at using yr_rnd to predict api00

regress api00 yr_rnd
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(1, 398) = 116.24

 Model | 1825000.56 1 1825000.56 Prob > F = 0.0000

 Residual | 6248671.43 398 15700.1795 R-squared = 0.2260

-------------+------------------------------ Adj R-squared = 0.2241

 Total | 8073672.00 399 20234.7669 Root MSE = 125.30

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 yr_rnd | -160.5064 14.8872 -10.78 0.000 -189.7737 -131.239

 _cons | 684.539 7.13965 95.88 0.000 670.5028 698.5751

--

And we have also looked at mealcat using the xi command

xi : regress api00 i.mealcat
i.mealcat _Imealcat_1-3 (naturally coded; _Imealcat_3 omitted)

 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(2, 397) = 611.12

 Model | 6094197.67 2 3047098.83 Prob > F = 0.0000

 Residual | 1979474.33 397 4986.08143 R-squared = 0.7548

-------------+------------------------------ Adj R-squared = 0.7536

 Total | 8073672.00 399 20234.7669 Root MSE = 70.612

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _Imealcat_1 | 301.338 8.628815 34.92 0.000 284.3741 318.3019

 _Imealcat_2 | 135.0144 8.61209 15.68 0.000 118.0834 151.9454

 _cons | 504.3796 6.032807 83.61 0.000 492.5193 516.2398

--

We can include both yr_rnd and mealcat together in the same model.

xi : regress api00 i.mealcat yr_rnd
i.mealcat _Imealcat_1-3 (naturally coded; _Imealcat_3 omitted)

 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(3, 396) = 435.02

 Model | 6194144.30 3 2064714.77 Prob > F = 0.0000

 Residual | 1879527.69 396 4746.28206 R-squared = 0.7672

-------------+------------------------------ Adj R-squared = 0.7654

 Total | 8073672.00 399 20234.7669 Root MSE = 68.893

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _Imealcat_1 | 281.6832 9.445676 29.82 0.000 263.1132 300.2531

 _Imealcat_2 | 117.9458 9.188911 12.84 0.000 99.88066 136.011

 yr_rnd | -42.96006 9.361761 -4.59 0.000 -61.36502 -24.55509

 _cons | 526.33 7.584533 69.40 0.000 511.419 541.2409

--

We can test the overall effect of mealcat with the test command, which is significant.

test _Imealcat_1 _Imealcat_2
 (1) _Imealcat_1 = 0.0

 (2) _Imealcat_2 = 0.0

 F(2, 396) = 460.27

 Prob > F = 0.0000

Because this model has only main effects (no interactions) you can interpret Byr_rnd as the difference between the year round and non-year round group. The coefficient for I_mealcat_1 (which we will call B_Imealcat_1) is the difference between mealcat=1 and mealcat=3, and B_Imealcat_2 as the difference between mealcat=2 and mealcat=3.

Let's dig below the surface and see how the coefficients relate to the predicted values. Let's view the cells formed by crossing yr_rnd and mealcat and number the cells from cell1 to cell6.

 mealcat=1 mealcat=2 mealcat=3

 yr_rnd=0 cell1 cell2 cell3

 yr_rnd=1 cell4 cell5 cell6

With respect to mealcat, the group mealcat=3 is the reference category, and with respect to yr_rnd the group yr_rnd=0 is the reference category. As a result, cell3 is the reference cell. The constant is the predicted value for this cell.

The coefficient for yr_rnd is the difference between cell3 and cell6. Since this model has only main effects, it is also the difference between cell2 and cell5, or from cell1 and cell4. In other words, Byr_rnd is the amount you add to the predicted value when you go from non-year round to year round schools.

The coefficient for _Imealcat_1 is the predicted difference between cell1 and cell3. Since this model only has main effects, it is also the predicted difference between cell4 and cell6. Likewise, B_Imealcat_2 is the predicted difference between cell2 and cell3, and also the predicted difference between cell5 and cell6.

So, the predicted values, in terms of the coefficients, would be

 mealcat=1 mealcat=2 mealcat=3

 yr_rnd=0 _cons _cons _cons

 +BImealcat1 +BImealcat2

 yr_rnd=1 _cons _cons _cons

 +Byr_rnd +Byr_rnd +Byr_rnd

 +BImealcat1 +BImealcat2

We should note that if you computed the predicted values for each cell, they would not exactly match the means in the 6 cells. The predicted means would be close to the observed means in the cells, but not exactly the same. This is because our model only has main effects and assumes that the difference between cell1 and cell4 is exactly the same as the difference between cells 2 and 5 which is the same as the difference between cells 3 and 5. Since the observed values don't follow this pattern, there is some discrepancy between the predicted means and observed means.

3.4.2 Using the anova command

We can run the same analysis using the anova command with just main effects

anova api00 yr_rnd mealcat
 Number of obs = 400 R-squared = 0.7672

 Root MSE = 68.8933 Adj R-squared = 0.7654

 Source | Partial SS df MS F Prob > F

 -----------+--

 Model | 6194144.30 3 2064714.77 435.02 0.0000

 |

 yr_rnd | 99946.6332 1 99946.6332 21.06 0.0000

 mealcat | 4369143.74 2 2184571.87 460.27 0.0000

 |

 Residual | 1879527.69 396 4746.28206

 -----------+--

 Total | 8073672.00 399 20234.7669

Note that we get the same information that we do from the xi : regress command, followed by the test command. The anova command automatically provides the information provided by the test command. If we like, we can also request the parameter estimates later just by doing this.

anova, regress
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(3, 396) = 435.02

 Model | 6194144.30 3 2064714.77 Prob > F = 0.0000

 Residual | 1879527.69 396 4746.28206 R-squared = 0.7672

-------------+------------------------------ Adj R-squared = 0.7654

 Total | 8073672.00 399 20234.7669 Root MSE = 68.893

--

 api00 Coef. Std. Err. t P>|t| [95% Conf. Interval]

--

_cons 483.3699 7.45694 64.82 0.000 468.7098 498.03

yr_rnd

 1 42.96006 9.361761 4.59 0.000 24.55509 61.36502

 2 (dropped)

mealcat

 1 281.6832 9.445676 29.82 0.000 263.1132 300.2531

 2 117.9458 9.188911 12.84 0.000 99.88066 136.011

 3 (dropped)

--

anova will display the parameter estimates from the last anova model. However, the anova command is rigid in its determination of which group will be the omitted group and the last group is dropped. Since this differs from the coding we used in the regression commands above, the parameter estimates from this anova command will differ from the regress command above.

In summary, these results indicate the differences between year round and non-year round schools is significant, and the differences among the three mealcat groups are significant.

3.5 Categorical predictor with interactions

3.5.1 using xi

Let's perform the same analysis that we performed above, this time let's include the interaction of mealcat by yr_rnd. When using xi, it is easy to include an interaction term, as shown below.

xi : regress api00 i.mealcat*yr_rnd
i.mealcat _Imealcat_1-3 (naturally coded; _Imealcat_3 omitted)

i.meal~t*yr_rnd _ImeaXyr_rn_# (coded as above)

 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(5, 394) = 261.61

 Model | 6204727.82 5 1240945.56 Prob > F = 0.0000

 Residual | 1868944.18 394 4743.51314 R-squared = 0.7685

-------------+------------------------------ Adj R-squared = 0.7656

 Total | 8073672.00 399 20234.7669 Root MSE = 68.873

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _Imealcat_1 | 288.1929 10.44284 27.60 0.000 267.6623 308.7236

 _Imealcat_2 | 123.781 10.55185 11.73 0.000 103.036 144.5259

 yr_rnd | -33.49254 11.77129 -2.85 0.005 -56.63492 -10.35015

_ImeaXyr_r~1 | -40.76438 29.23118 -1.39 0.164 -98.23297 16.70422

_ImeaXyr_r~2 | -18.24763 22.25624 -0.82 0.413 -62.00347 25.5082

 _cons | 521.4925 8.414197 61.98 0.000 504.9502 538.0349

--

We can test the overall interaction with the test command. This interaction effect is not significant.

test _ImeaXyr_rn_1 _ImeaXyr_rn_2
 (1) _ImeaXyr_rn_1 = 0.0

 (2) _ImeaXyr_rn_2 = 0.0

 F(2, 394) = 1.12

 Prob > F = 0.3288

It is important to note how the meaning of the coefficients change in the presence of these interaction terms. For example, in the prior model, with only main effects, we could interpret Byr_rnd as the difference between the year round and non year round schools. However, now that we have added the interaction term, the term Byr_rnd represents the difference between cell3 and cell6, or the difference between the year round and non-year round schools when mealcat=3 (because mealcat=3 was the omitted group). The presence of an interaction would imply that the difference between year round and non-year round schools depends on the level of mealcat. The interaction terms B_ImeaXyr_rn_1 and B_ImeaXyr_rn_2 represent the extent to which the difference between the year round/non year round schools changes when mealcat=1 and when mealcat=2 (as compared to the reference group, mealcat=3). For example the term B_ImeaXyr_rn_1 represents the difference between year round and non-year round for mealcat=1 vs. the difference for mealcat=3. In other words, B_ImeaXyr_rn_1 in this design is (cell1-cell4) - (cell3-cell6), or it represents how much the effect of yr_rnd differs between mealcat=1 and mealcat=3.

Below we have shown the predicted values for the six cells in terms of the coefficients in the model. If you compare this to the main effects model, you will see that the predicted values are the same except for the addition of _ImeaXyr_rn_1 (in cell 4) and _ImeaXyr_rn_2 (in cell 5).

 mealcat=1 mealcat=2 mealcat=3

 yr_rnd=0 _cons _cons _cons

 +BImealcat1 +BImealcat2

 yr_rnd=1 _cons _cons _cons

 +Byr_rnd +Byr_rnd +Byr_rnd

 +BImealcat1 +BImealcat2

 +B_ImeaXyr_rn_1 +B_ImeaXyr_rn_2

It can be very tricky to interpret these interaction terms if you wish to form specific comparisons. For example, if you wanted to perform a test of the simple main effect of yr_rnd when mealcat=1, i.e., comparing cell1 with cell4, you would want to compare _cons+ BImealcat1 vs. _cons + B yr_rnd + BImealcat1+ BImeaXyr_rn_1 and since _cons and Imealcat1 would drop out, we would test

test _b[yr_rnd] +_b[_ImeaXyr_rn_1] ==0
 (1) yr_rnd + _ImeaXyr_rn_1 = 0.0

 F(1, 394) = 7.70

 Prob > F = 0.0058

This test is significant, indicating that the effect of yr_rnd is significant for the mealcat = 1 group.

As we will see, such tests can be more easily done via anova.

3.5.2 Using anova

Constructing these interactions can be somewhat easier when using the anova command. As you see below, the anova command gives us the test of the overall main effects and interactions without the need to perform subsequent test commands.

anova api00 yr_rnd mealcat yr_rnd*mealcat
 Number of obs = 400 R-squared = 0.7685

 Root MSE = 68.8732 Adj R-squared = 0.7656

 Source | Partial SS df MS F Prob > F

 ---------------+--

 Model | 6204727.82 5 1240945.56 261.61 0.0000

 |

 yr_rnd | 99617.3706 1 99617.3706 21.00 0.0000

 mealcat | 1796232.80 2 898116.399 189.34 0.0000

 yr_rnd*mealcat | 10583.5187 2 5291.75936 1.12 0.3288

 |

 Residual | 1868944.18 394 4743.51314

 ---------------+--

 Total | 8073672.00 399 20234.7669

It is easy to perform tests of simple main effects using the sme command. You can download sme from within Stata by typing findit sme (see How can I used the findit command to search for programs and get additional help? for more information about using findit).

Now we can test the simple main effects of yr_rnd at each level of mealcat.

sme yr_rnd mealcat
Test of yr_rnd at mealcat(1): F(1/394) = 7.7023296

Test of yr_rnd at mealcat(2): F(1/394) = 7.5034121

Test of yr_rnd at mealcat(3): F(1/394) = 8.0955856

Critical value of F for alpha = .05 using ...

--

Dunn's procedure = 4.7435944

Marascuilo & Levin = 5.4561926

per family error rate = 5.7804

simultaneous test procedure = 8.1680324

The results from sme show us the effect of yr_rnd at each of the 3 levels of mealcat. We can see that the comparison for mealcat = 1 matches those we computed above using the test statement, however, it was much easier and less error prone using the sme command.

Although this section has focused on how to handle analyses involving interactions, these particular results show no indication of interaction. We could decide to omit interaction terms from future analyses having found the interactions to be non-significant. This would simplify future analyses, however including the interaction term can be useful to assure readers that the interaction term is non-significant.

3.6 Continuous and Categorical variables

3.6.1 Using regress
Say that we wish to analyze both continuous and categorical variables in one analysis. For example, let's include yr_rnd and some_col in the same analysis.

regress api00 yr_rnd some_col
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(2, 397) = 68.54

 Model | 2072201.84 2 1036100.92 Prob > F = 0.0000

 Residual | 6001470.16 397 15117.0533 R-squared = 0.2567

-------------+------------------------------ Adj R-squared = 0.2529

 Total | 8073672.00 399 20234.7669 Root MSE = 122.95

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 yr_rnd | -149.1591 14.87519 -10.03 0.000 -178.4031 -119.9151

 some_col | 2.235689 .5528656 4.04 0.000 1.148779 3.322599

 _cons | 637.8581 13.50332 47.24 0.000 611.3111 664.405

--

We can create the predicted values using the predict command.

predict yhat
(option xb assumed; fitted values)

Let's graph the predicted values by some_col.

scatter yhat some_col
[image: image5.png]
The coefficient for some_col indicates that for every unit increase in some_col the api00 score is predicted to increase by 2.23 units. This is the slope of the lines shown in the above graph. The graph has two lines, one for the year round schools and one for the non-year round schools. The coefficient for yr_rnd is -149.16, indicating that as yr_rnd increases by 1 unit, the api00 score is expected to decrease by about 149 units. As you can see in the graph, the top line is about 150 units higher than the lower line. You can see that the intercept is 637 and that is where the upper line crosses the Y axis when X is 0. The lower line crosses the line about 150 units lower at about 487.

3.6.2 Using anova

We can run this analysis using the anova command. The anova command assumes that the variables are categorical, thus, we need to use the continuous() option (which can be abbreviated as cont()) to specify that some_col is a continuous variable.

anova api00 yr_rnd some_col, cont(some_col)
 Number of obs = 400 R-squared = 0.2567

 Root MSE = 122.951 Adj R-squared = 0.2529

 Source | Partial SS df MS F Prob > F

 -----------+--

 Model | 2072201.84 2 1036100.92 68.54 0.0000

 |

 yr_rnd | 1519992.67 1 1519992.67 100.55 0.0000

 some_col | 247201.276 1 247201.276 16.35 0.0001

 |

 Residual | 6001470.16 397 15117.0533

 -----------+--

 Total | 8073672.00 399 20234.7669

If we square the t-values from the regress command (above), we would find that they match those of the anova command.

3.7 Interactions of Continuous by 0/1 Categorical variables

Above we showed an analysis that looked at the relationship between some_col and api00 and also included yr_rnd. We saw that this produced a graph where we saw the relationship between some_col and api00 but there were two regression lines, one higher than the other but with equal slope. Such a model assumed that the slope was the same for the two groups. Perhaps the slope might be different for these groups. Let's run the regressions separately for these two groups beginning with the non-year round schools.

regress api00 some_col if yr_rnd==0
 Source | SS df MS Number of obs = 308

-------------+------------------------------ F(1, 306) = 4.91

 Model | 84700.8576 1 84700.8576 Prob > F = 0.0274

 Residual | 5273591.67 306 17233.9597 R-squared = 0.0158

-------------+------------------------------ Adj R-squared = 0.0126

 Total | 5358292.53 307 17453.7216 Root MSE = 131.28

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 some_col | 1.409427 .6357572 2.22 0.027 .1584181 2.660436

 _cons | 655.1103 15.23704 42.99 0.000 625.1277 685.0929

--

predict yhat0 if yr_rnd==0
(option xb assumed; fitted values)

(92 missing values generated)

scatter yhat0 api00 some_col if yr_rnd==0, connect(l i) msymbol(i o) sort
[image: image6.png]
Likewise, let's look at the year round schools.

regress api00 some_col if yr_rnd==1
 Source | SS df MS Number of obs = 92

-------------+------------------------------ F(1, 90) = 65.08

 Model | 373644.064 1 373644.064 Prob > F = 0.0000

 Residual | 516734.838 90 5741.4982 R-squared = 0.4196

-------------+------------------------------ Adj R-squared = 0.4132

 Total | 890378.902 91 9784.38354 Root MSE = 75.773

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 some_col | 7.402618 .9176327 8.07 0.000 5.57958 9.225655

 _cons | 407.0391 16.51462 24.65 0.000 374.2299 439.8482

--

predict yhat1 if yr_rnd==1
(option xb assumed; fitted values)

(308 missing values generated)

scatter yhat1 api00 some_col if yr_rnd==1, connect(l i) msymbol(i o) sort
[image: image7.png]
Note that the slope of the regression line looks much steeper for the year round schools than for the non-year round schools. This is confirmed by the regression equations that show the slope for the year round schools to be higher (7.4) than non-year round schools (1.3). We can compare these to see if these are significantly different from each other by including the interaction of some_col by yr_rnd, an interaction of a continuous variable by a categorical variable.

3.7.1 Computing interactions manually

We will start by manually computing the interaction of some_col by yr_rnd. Let's start fresh and use the elemapi2 data file using the , clear option to clear out any variables we have previously created.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2, clear
Next, let's make a variable that is the interaction of some college (some_col) and year round schools (yr_rnd) called yrXsome.

gen yrXsome = yr_rnd*some_col
We can now run the regression that tests whether the coefficient for some_col is significantly different for year round schools and non-year round schools. Indeed, the yrXsome interaction effect is significant.

regress api00 some_col yr_rnd yrXsome
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(3, 396) = 52.05

 Model | 2283345.48 3 761115.162 Prob > F = 0.0000

 Residual | 5790326.51 396 14622.0366 R-squared = 0.2828

-------------+------------------------------ Adj R-squared = 0.2774

 Total | 8073672.00 399 20234.7669 Root MSE = 120.92

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 some_col | 1.409427 .5856022 2.41 0.017 .2581494 2.560705

 yr_rnd | -248.0712 29.85895 -8.31 0.000 -306.7731 -189.3694

 yrXsome | 5.99319 1.57715 3.80 0.000 2.892557 9.093824

 _cons | 655.1103 14.03499 46.68 0.000 627.5179 682.7027

--

We can make a graph showing the regression lines for the two types of schools showing how different their regression lines are. We first create the predicted value, we call it yhata.

predict yhata
(option xb assumed; fitted values)

Then, we create separate variables for the two types of schools which will be called yhata0 for non-year round schools and yhata1 for year round schools.

separate yhata, by(yr_rnd)
 storage display value

variable name type format label variable label

yhata0 float %9.0g yhata, yr_rnd == 0

yhata1 float %9.0g yhata, yr_rnd == 1

We can then graph the predicted values for the two types of schools by some_col. You can see how the two lines have quite different slopes, consistent with the fact that the yrXsome interaction was significant. The c(ll[_]) option indicates that yhata0 should be connected with a line, and yhata1 should be connected with dashed lines (because we included [_] after the l). If we had used l[.] it would have made a dotted line. The options to make dashed and dotted lines are new to Stata 7 and you can find more information via help grsym .

line yhata0 yhata1 some_col, sort
[image: image8.png]
We can replot the same graph including the data points.

twoway (line yhata0 yhata1 some_col, sort) (scatter api00 some_col)
[image: image9.png]
The graph above used the same kind of dots for the data points for both types of schools. Let's make separate variables for the api00 scores for the two types of schools called api000 for the non-year round schools and api001 for the year round schools.

separate api00, by(yr_rnd)
 storage display value

variable name type format label variable label

api000 int %6.0g api00, yr_rnd == 0

api001 int %6.0g api00, yr_rnd == 1

We can then make the same graph as above except show the points differently for the two types of schools. Below we use small circles for the non-year round schools, and triangles for the year round schools.

twoway (line yhata0 yhata1 some_col, sort) (scatter api000 api001 some_col)
[image: image10.png]
Let's quickly run the regressions again where we performed separate regressions for the two groups

Non-year round

regress api00 some_col if yr_rnd==0
 Source | SS df MS Number of obs = 308

-------------+------------------------------ F(1, 306) = 4.91

 Model | 84700.8576 1 84700.8576 Prob > F = 0.0274

 Residual | 5273591.67 306 17233.9597 R-squared = 0.0158

-------------+------------------------------ Adj R-squared = 0.0126

 Total | 5358292.53 307 17453.7216 Root MSE = 131.28

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 some_col | 1.409427 .6357572 2.22 0.027 .1584181 2.660436

 _cons | 655.1103 15.23704 42.99 0.000 625.1277 685.0929

--

Year round

regress api00 some_col if yr_rnd==1
 Source | SS df MS Number of obs = 92

-------------+------------------------------ F(1, 90) = 65.08

 Model | 373644.064 1 373644.064 Prob > F = 0.0000

 Residual | 516734.838 90 5741.4982 R-squared = 0.4196

-------------+------------------------------ Adj R-squared = 0.4132

 Total | 890378.902 91 9784.38354 Root MSE = 75.773

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 some_col | 7.402618 .9176327 8.07 0.000 5.57958 9.225655

 _cons | 407.0391 16.51462 24.65 0.000 374.2299 439.8482

--

Now, let's show the regression for both types of schools with the interaction term.

regress api00 some_col yr_rnd yrXsome
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(3, 396) = 52.05

 Model | 2283345.48 3 761115.162 Prob > F = 0.0000

 Residual | 5790326.51 396 14622.0366 R-squared = 0.2828

-------------+------------------------------ Adj R-squared = 0.2774

 Total | 8073672.00 399 20234.7669 Root MSE = 120.92

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 some_col | 1.409427 .5856022 2.41 0.017 .2581494 2.560705

 yr_rnd | -248.0712 29.85895 -8.31 0.000 -306.7731 -189.3694

 yrXsome | 5.99319 1.57715 3.80 0.000 2.892557 9.093824

 _cons | 655.1103 14.03499 46.68 0.000 627.5179 682.7027

--

Note that the coefficient for some_col in the combined analysis is the same as the coefficient for some_col for the non-year round schools? This is because non-year round schools are the reference group. Then, the coefficient for the yrXsome interaction in the combined analysis is the Bsome_col for the year round schools (7.4) minus Bsome_col for the non year round schools (1.41) yielding 5.99. This interaction is the difference in the slopes of some_col for the two types of schools, and this is why this is useful for testing whether the regression lines for the two types of schools are equal. If the two types of schools had the same regression coefficient for some_col, then the coefficient for the yrXsome interaction would be 0. In this case, the difference is significant, indicating that the regression lines are significantly different.

So, if we look at the graph of the two regression lines we can see the difference in the slopes of the regression lines (see graph below). Indeed, we can see that the non-year round schools (the solid line) have a smaller slope (1.4) than the slope for the year round schools (7.4). The difference between these slopes is 5.99, the coefficient for yrXsome.

line yhata0 yhata1 some_col, sort
[image: image11.png]

3.7.2 Computing interactions with xi

We can use the xi command for doing this kind of analysis as well. Let's start fresh and use the elemapi2 file.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2, clear
We can run a model just like the model we showed above using the xi command. You can compare the results to those above and see that we get the exact same results.

xi : regress api00 i.yr_rnd*some_col
i.yr_rnd _Iyr_rnd_1-2 (naturally coded; _Iyr_rnd_1 omitted)

i.yr_rnd*some~l _Iyr_Xsome__# (coded as above)

 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(3, 396) = 52.05

 Model | 2283345.48 3 761115.162 Prob > F = 0.0000

 Residual | 5790326.51 396 14622.0366 R-squared = 0.2828

-------------+------------------------------ Adj R-squared = 0.2774

 Total | 8073672.00 399 20234.7669 Root MSE = 120.92

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _Iyr_rnd_2 | -248.0712 29.85895 -8.31 0.000 -306.7731 -189.3694

 some_col | 1.409427 .5856022 2.41 0.017 .2581494 2.560705

_Iyr_Xsome~2 | 5.99319 1.57715 3.80 0.000 2.892557 9.093824

 _cons | 655.1103 14.03499 46.68 0.000 627.5179 682.7027

--

The i.yr_rnd*some_col term creates 3 terms, some_col, _Iyr_rnd_2 an indicator variable for yr_rnd representing whether the school is year round and the variable _Iyr_Xsome~2 representing the interaction of yr_rnd by some_col.

As we did above, we can create predicted values and create graphs showing the regression lines for the two types of schools. We omit showing these commands.

3.7.3 Computing interactions with anova

We can also run a model just like the model we showed above using the anova command. We include the terms yr_rnd some_col and the interaction yr_rnr*some_col

anova api00 yr_rnd some_col yr_rnd*some_col, contin(some_col)
 Number of obs = 400 R-squared = 0.2828

 Root MSE = 120.922 Adj R-squared = 0.2774

 Source | Partial SS df MS F Prob > F

 ----------------+--

 Model | 2283345.48 3 761115.162 52.05 0.0000

 |

 yr_rnd | 1009279.99 1 1009279.99 69.02 0.0000

 some_col | 456473.187 1 456473.187 31.22 0.0000

 yr_rnd*some_col | 211143.646 1 211143.646 14.44 0.0002

 |

 Residual | 5790326.51 396 14622.0366

 ----------------+--

 Total | 8073672.00 399 20234.7669

As we illustrated above, we can compute the predicted values using the predict command and graph the separate regression lines. These commands are omitted.

In this section we found that the relationship between some_col and api00 depended on whether the school is a year round school or a non-year round school. For the year round schools, the relationship between some_col and api00 was significantly stronger than for non-year round schools. In general, this type of analysis allows you to test whether the strength of the relationship between two continuous variables varies based on the categorical variable.

3.8 Continuous and Categorical variables, interaction with 1/2/3 variable

The prior examples showed how to do regressions with a continuous variable and a categorical variable that has 2 levels. These examples will extend this further by using a categorical variable with 3 levels, mealcat.

3.8.1 using xi

We can use the xi command to run a model with some_col, mealcat and the interaction of these two variables.

xi : regress api00 i.mealcat*some_col
i.mealcat _Imealcat_1-3 (naturally coded; _Imealcat_1 omitted)

i.meal~t*some~l _ImeaXsome__# (coded as above)

 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(5, 394) = 263.00

 Model | 6212306.88 5 1242461.38 Prob > F = 0.0000

 Residual | 1861365.12 394 4724.27696 R-squared = 0.7695

-------------+------------------------------ Adj R-squared = 0.7665

 Total | 8073672.00 399 20234.7669 Root MSE = 68.733

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _Imealcat_2 | -239.03 18.66502 -12.81 0.000 -275.7255 -202.3345

 _Imealcat_3 | -344.9476 17.05743 -20.22 0.000 -378.4825 -311.4126

 some_col | -.9473385 .4873679 -1.94 0.053 -1.905505 .0108284

_ImeaXsome~2 | 3.140945 .7292897 4.31 0.000 1.707159 4.57473

_ImeaXsome~3 | 2.607308 .8960435 2.91 0.004 .8456841 4.368933

 _cons | 825.8937 11.99182 68.87 0.000 802.3177 849.4697

--

The interaction now has two terms (_ImeaXsome~2 and _ImeaXsome~3). To get an overall test of this interaction, we can use the test command.

test _ImeaXsome__2 _ImeaXsome__3
 (1) _ImeaXsome__2 = 0.0

 (2) _ImeaXsome__3 = 0.0

 F(2, 394) = 10.32

 Prob > F = 0.0000

These results indicate that the overall interaction is indeed significant. This means that the regression lines from the 3 groups differ significantly. As we have done before, let's compute the predicted values and make a graph of the predicted values so we can see how the regression lines differ.

predict yhatc
(option xb assumed; fitted values)

separate yhatc, by(mealcat)
 storage display value

variable name type format label variable label

yhatc1 float %9.0g yhatc, mealcat == 1

yhatc2 float %9.0g yhatc, mealcat == 2

yhatc3 float %9.0g yhatc, mealcat == 3

Since we had three groups, we get three regression lines, one for each category of mealcat. The solid line is for group 1, the dashed line for group 2, and the dotted line is for group 3.

line yhatc1 yhatc2 yhatc3 some_col, sort
[image: image12.png]
Group 1 was the omitted group, therefore the slope of the line for group 1 is the coefficient for some_col which is -.94. Indeed, this line has a downward slope. If we add the coefficient for some_col to the coefficient for _ImeaXsome~2 we get the coefficient for group 2, i.e., 3.14 + -.94 yields 2.2, the slope for group 2. Indeed, group 2 shows an upward slope. Likewise, if we add the coefficient for some_col to the coefficient for _ImeaXsome~3 we get the coefficient for group 3, i.e., 2.6 + -.94 yields 1.66, the slope for group 3,. So, the slopes for the 3 groups are

group 1: -0.94

group 2: 2.2

group 3: 1.66

The test of the coefficient for _ImeaXsome~2 tested whether the coefficient for group 2 differed from group 1, and indeed this was significant. Likewise, the test of the coefficient for _ImeaXsome~3 tested whether the coefficient for group 3 differed from group 1, and indeed this was significant. What did the test of the coefficient some_col test? This coefficient represents the coefficient for group 1, so this tested whether the coefficient for group 1 (-0.94) was significantly different from 0. This is probably a non-interesting test.

The comparisons in the above analyses don't seem to be as interesting as comparing group 1 vs. 2 and then comparing group 2 vs. 3. These successive comparisons seem much more interesting. We can do this by making group 2 the omitted group, and then each group would be compared to group 2. As we have done before, we will use the char command to indicate that we want group 2 to be the omitted category and then rerun the regression.

char mealcat[omit] 2

xi : regress api00 i.mealcat*some_col
i.mealcat _Imealcat_1-3 (naturally coded; _Imealcat_2 omitted)

i.meal~t*some~l _ImeaXsome__# (coded as above)

 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(5, 394) = 263.00

 Model | 6212306.88 5 1242461.38 Prob > F = 0.0000

 Residual | 1861365.12 394 4724.27696 R-squared = 0.7695

-------------+------------------------------ Adj R-squared = 0.7665

 Total | 8073672.00 399 20234.7669 Root MSE = 68.733

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _Imealcat_1 | 239.03 18.66502 12.81 0.000 202.3345 275.7255

 _Imealcat_3 | -105.9176 18.7545 -5.65 0.000 -142.789 -69.0462

 some_col | 2.193606 .5425274 4.04 0.000 1.126996 3.260217

_ImeaXsome~1 | -3.140945 .7292897 -4.31 0.000 -4.57473 -1.707159

_ImeaXsome~3 | -.5336362 .9272014 -0.58 0.565 -2.356517 1.289245

 _cons | 586.8637 14.30311 41.03 0.000 558.7438 614.9837

--

Now, the test of _ImeaXsome~1 tests whether the coefficient for group 1 differs from group 2, and it does. Then, the test of _ImeaXsome~3 tests whether the coefficient for group 3 significantly differs from group 2, and it does not. This makes sense given the graph and given the estimates of the coefficients that we have, that -.94 is significantly different from 2.2 but 2.2 is not significantly different from 1.66.

3.8.2 Using Anova

We can perform the same analysis using the anova command, as shown below. The anova command gives us somewhat less flexibility since we cannot choose which group is the omitted group.

use elemapi2, clear

anova api00 mealcat some_col mealcat*some_col, cont(some_col)
 Number of obs = 400 R-squared = 0.7695

 Root MSE = 68.7334 Adj R-squared = 0.7665

 Source | Partial SS df MS F Prob > F

 -----------------+--

 Model | 6212306.88 5 1242461.38 263.00 0.0000

 |

 mealcat | 2012065.49 2 1006032.75 212.95 0.0000

 some_col | 36366.3662 1 36366.3662 7.70 0.0058

 mealcat*some_col | 97468.1685 2 48734.0843 10.32 0.0000

 |

 Residual | 1861365.12 394 4724.27696

 -----------------+--

 Total | 8073672.00 399 20234.7669

Because the anova command omits the 3rd category, and the analysis we showed above omitted the second category, the parameter estimates will not be the same. You can compare the results from below with the results above and see that the parameter estimates are not the same. Because group 3 is dropped, that is the reference category and all comparisons are made with group 3.

anova, regress
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(5, 394) = 263.00

 Model | 6212306.88 5 1242461.38 Prob > F = 0.0000

 Residual | 1861365.12 394 4724.27696 R-squared = 0.7695

-------------+------------------------------ Adj R-squared = 0.7665

 Total | 8073672.00 399 20234.7669 Root MSE = 68.733

--

 api00 Coef. Std. Err. t P>|t| [95% Conf. Interval]

--

_cons 480.9461 12.13063 39.65 0.000 457.0973 504.795

meals3

 1 344.9476 17.05743 20.22 0.000 311.4126 378.4825

 2 105.9176 18.7545 5.65 0.000 69.0462 142.789

 3 (dropped)

some_col 1.65997 .7519086 2.21 0.028 .1817153 3.138225

meals3*some_col

 1 -2.607308 .8960435 -2.91 0.004 -4.368933 -.8456841

 2 .5336362 .9272014 0.58 0.565 -1.289245 2.356517

 3 (dropped)

--

These analyses showed that the relationship between some_col and api00 varied, depending on the level of mealcat. In comparing group 1 with group 2, the coefficient for some_col was significantly different, but there was no difference in the coefficient for some_col in comparing groups 2 and 3.

3.9 Summary

This covered four techniques for analyzing data with categorical variables, 1) manually constructing indicator variables, 2) creating indicator variables using the xi command, 3) coding variables using xi3, and 4) using the anova command. Each method has its advantages and disadvantages, as described below.

Manually constructing indicator variables can be very tedious and even error prone. For very simple models, it is not very difficult to create your own indicator variables, but if you have categorical variables with many levels and/or interactions of categorical variables, it can be laborious to manually create indicator variables. However, the advantage is that you can have quite a bit of control over how the variables are created and the terms that are entered into the model.

The xi command can really ease the creation of indicator variables, and make it easier to include interactions in your models by allowing you to include interaction terms such as i.prog*female . The xi command also gives you the flexibility to decide which category would be the omitted category (unlike the anova command).

The anova command eliminates the need to create indicator variables making it easy to include variables that have lots of categories, and making it easy to create interactions by allowing you to include terms like some_col*mealcat. It can be easier to perform tests of simple main effects with the anova command. However, the anova command is not flexible in letting you choose which category is the omitted category (the last category is always the omitted category).

As you will see in the next chapter, the regress command includes additional options like the robust option and the cluster option that allow you to perform analyses when you don't exactly meet the assumptions of ordinary least squares regression. In such cases, the regress command offers features not available in the anova command and may be more advantageous to use.

See the Stata Topics: Regression page for more information and resources on regression with categorical predictors in Stata.

3.10 Self Assessment

1. Using the elemapi2 data file (use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2) convert the variable ell into 2 categories using the following coding, 0-25 on ell becomes 0, and 26-100 on ell becomes 1. Use this recoded version of ell to predict api00 and interpret the results.

2. Convert the variable ell into 3 categories coding those scoring 0-14 on ell as 1, and those 15/41 as 1 and 42/100 as 3. Do an analysis predicting api00 from the ell variable converted to a 1/2/3 variable. Interpret the results.

3. Do a regression analysis predicting api00 from yr_rnd and the ell variable converted to a 0/1 variable. Then create an interaction term and run the analysis again. Interpret the results of these analyses.

4. Do a regression analysis predicting api00 from ell coded as 0/1 (from question 1) and some_col, and the interaction of these two variables. Interpret the results, including showing a graph of the results.

5. Use the variable ell converted into 3 categories (from question 2) and predict api00 from ell in 3 categories, from some_col and the interaction. of these two variables. Interpret the results, including showing a graph.

Click here for our answers to these self assessment questions.

3.11 For more information
· Stata Manuals

· [R] xi

· [R] anova

· [R] test

· Web Links

· Creating Dummy Variables
- Stata FAQ- How can I create dummy variables in Stata

· Models with interactions of continuous and categorical variables
- Stata FAQ- How can I compare regression coefficients between 2 groups
- Stata FAQ- How can I compare regression coefficients across 3 (or more) groups

· Other
- Stata FAQ: How can I form various tests comparing the different levels of a categorical variable after anova or regress?
- Stata FAQ- Why do estimation commands sometimes drop variables (from Stata FAQs)

[image: image13.png][image: image14.png][image: image15.png]
Stata Web Books
Regression with Stata
Chapter 2 - Regression Diagnostics

Chapter Outline
 2.0 Regression Diagnostics
 2.1 Unusual and Influential data
 2.2 Checking Normality of Residuals
 2.3 Checking Homoscedasticity
 2.4 Checking for Multicollinearity
 2.5 Checking Linearity
 2.6 Model Specification
 2.7 Issues of Independence
 2.8 Summary
 2.9 Self assessment
 2.10 For more information
2.0 Regression Diagnostics

 In the previous chapter, we learned how to do ordinary linear regression with Stata, concluding with methods for examining the distribution of our variables. Without verifying that your data have met the assumptions underlying OLS regression, your results may be misleading. This chapter will explore how you can use Stata to check on how well your data meet the assumptions of OLS regression. In particular, we will consider the following assumptions.

· Linearity - the relationships between the predictors and the outcome variable should be linear

· Normality - the errors should be normally distributed - technically normality is necessary only for hypothesis tests to be valid,
estimation of the coefficients only requires that the errors be identically and independently distributed

· Homogeneity of variance (homoscedasticity) - the error variance should be constant

· Independence - the errors associated with one observation are not correlated with the errors of any other observation

· Errors in variables - predictor variables are measured without error (we will cover this in Chapter 4)

· Model specification - the model should be properly specified (including all relevant variables, and excluding irrelevant variables)

Additionally, there are issues that can arise during the analysis that, while strictly speaking are not assumptions of regression, are none the less, of great concern to data analysts.

· Influence - individual observations that exert undue influence on the coefficients

· Collinearity - predictors that are highly collinear, i.e., linearly related, can cause problems in estimating the regression coefficients.

Many graphical methods and numerical tests have been developed over the years for regression diagnostics. Stata has many of these methods built-in, and others are available that can be downloaded over the internet. In particular, Nicholas J. Cox (University of Durham) has produced a collection of convenience commands which can be downloaded from SSC (ssc install commandname). These commands include indexplot, rvfplot2, rdplot, qfrplot and ovfplot. In this chapter, we will explore these methods and show how to verify regression assumptions and detect potential problems using Stata.

2.1 Unusual and Influential data

A single observation that is substantially different from all other observations can make a large difference in the results of your regression analysis. If a single observation (or small group of observations) substantially changes your results, you would want to know about this and investigate further. There are three ways that an observation can be unusual.

Outliers: In linear regression, an outlier is an observation with large residual. In other words, it is an observation whose dependent-variable value is unusual given its values on the predictor variables. An outlier may indicate a sample peculiarity or may indicate a data entry error or other problem.

Leverage: An observation with an extreme value on a predictor variable is called a point with high leverage. Leverage is a measure of how far an independent variable deviates from its mean. These leverage points can have an effect on the estimate of regression coefficients.

Influence: An observation is said to be influential if removing the observation substantially changes the estimate of coefficients. Influence can be thought of as the product of leverage and outlierness.

How can we identify these three types of observations? Let's look at an example dataset called crime. This dataset appears in Statistical Methods for Social Sciences, Third Edition by Alan Agresti and Barbara Finlay (Prentice Hall, 1997). The variables are state id (sid), state name (state), violent crimes per 100,000 people (crime), murders per 1,000,000 (murder), the percent of the population living in metropolitan areas (pctmetro), the percent of the population that is white (pctwhite), percent of population with a high school education or above (pcths), percent of population living under poverty line (poverty), and percent of population that are single parents (single).

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/crime

(crime data from agresti & finlay - 1997)

describe
Contains data from crime.dta

 obs: 51 crime data from agresti &

 finlay - 1997

 vars: 11 6 Feb 2001 13:52

 size: 2,295 (98.9% of memory free)

 1. sid float %9.0g

 2. state str3 %9s

 3. crime int %8.0g violent crime rate

 4. murder float %9.0g murder rate

 5. pctmetro float %9.0g pct metropolitan

 6. pctwhite float %9.0g pct white

 7. pcths float %9.0g pct hs graduates

 8. poverty float %9.0g pct poverty

 9. single float %9.0g pct single parent

Sorted by:

summarize crime murder pctmetro pctwhite pcths poverty single
Variable | Obs Mean Std. Dev. Min Max

---------+---

 crime | 51 612.8431 441.1003 82 2922

 murder | 51 8.727451 10.71758 1.6 78.5

pctmetro | 51 67.3902 21.95713 24 100

pctwhite | 51 84.11569 13.25839 31.8 98.5

 pcths | 51 76.22353 5.592087 64.3 86.6

 poverty | 51 14.25882 4.584242 8 26.4

 single | 51 11.32549 2.121494 8.4 22.1

Let's say that we want to predict crime by pctmetro, poverty, and single. That is to say, we want to build a linear regression model between the response variable crime and the independent variables pctmetro, poverty and single. We will first look at the scatter plots of crime against each of the predictor variables before the regression analysis so we will have some ideas about potential problems. We can create a scatterplot matrix of these variables as shown below.

graph matrix crime pctmetro poverty single
[image: image16.png]
The graphs of crime with other variables show some potential problems. In every plot, we see a data point that is far away from the rest of the data points. Let's make individual graphs of crime with pctmetro and poverty and single so we can get a better view of these scatterplots. We will add the mlabel(state) option to label each marker with the the state name to identify outlying states.

scatter crime pctmetro, mlabel(state)
 [image: image17.png]
scatter crime poverty, mlabel(state)
 [image: image18.png]
scatter crime single, mlabel(state)
 [image: image19.png]
All the scatter plots suggest that the observation for state = dc is a point that requires extra attention since it stands out away from all of the other points. We will keep it in mind when we do our regression analysis.

Now let's try the regression command predicting crime from pctmetro poverty and single. We will go step-by-step to identify all the potentially unusual or influential points afterwards.

regress crime pctmetro poverty single
 Source | SS df MS Number of obs = 51

---------+------------------------------ F(3, 47) = 82.16

 Model | 8170480.21 3 2723493.40 Prob > F = 0.0000

Residual | 1557994.53 47 33148.8199 R-squared = 0.8399

---------+------------------------------ Adj R-squared = 0.8296

 Total | 9728474.75 50 194569.495 Root MSE = 182.07

--

 crime | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

pctmetro | 7.828935 1.254699 6.240 0.000 5.304806 10.35306

 poverty | 17.68024 6.94093 2.547 0.014 3.716893 31.64359

 single | 132.4081 15.50322 8.541 0.000 101.2196 163.5965

 _cons | -1666.436 147.852 -11.271 0.000 -1963.876 -1368.996

--

Let's examine the studentized residuals as a first means for identifying outliers. Below we use the predict command with the rstudent option to generate studentized residuals and we name the residuals r. We can choose any name we like as long as it is a legal Stata variable name. Studentized residuals are a type of standardized residual that can be used to identify outliers.

predict r, rstudent
Let's examine the residuals with a stem and leaf plot. We see three residuals that stick out, -3.57, 2.62 and 3.77.

stem r
Stem-and-leaf plot for r (Studentized residuals)

r rounded to nearest multiple of .01

plot in units of .01

-3** | 57

-3** |

-2** |

-2** |

-1** | 84,69

-1** | 30,15,13,04,02

-0** | 87,85,65,58,56,55,54

-0** | 47,46,45,38,36,30,28,21,08,02

 0** | 05,06,08,13,27,28,29,31,35,41,48,49

 0** | 56,64,70,80,82

 1** | 01,03,03,08,15,29

 1** | 59

 2** |

 2** | 62

 3** |

 3** | 77

The stem and leaf display helps us see some potential outliers, but we cannot see which state (which observations) are potential outliers. Let's sort the data on the residuals and show the 10 largest and 10 smallest residuals along with the state id and state name. Note that in the second list command the -10/l the last value is the letter "l", NOT the number one.

sort r

list sid state r in 1/10
 sid state r

 1. 25 ms -3.570789

 2. 18 la -1.838577

 3. 39 ri -1.685598

 4. 47 wa -1.303919

 5. 35 oh -1.14833

 6. 48 wi -1.12934

 7. 6 co -1.044952

 8. 22 mi -1.022727

 9. 4 az -.8699151

 10. 44 ut -.8520518

list sid state r in -10/l
 sid state r

 42. 24 mo .8211724

 43. 20 md 1.01299

 44. 29 ne 1.028869

 45. 40 sc 1.030343

 46. 16 ks 1.076718

 47. 14 il 1.151702

 48. 13 id 1.293477

 49. 12 ia 1.589644

 50. 9 fl 2.619523

 51. 51 dc 3.765847

We should pay attention to studentized residuals that exceed +2 or -2, and get even more concerned about residuals that exceed +2.5 or -2.5 and even yet more concerned about residuals that exceed +3 or -3. These results show that DC and MS are the most worrisome observations followed by FL.

Another way to get this kind of output is with a command called hilo. You can download hilo from within Stata by typing findit hilo (see How can I used the findit command to search for programs and get additional help? for more information about using findit).

Once installed, you can type the following and get output similar to that above by typing just one command.

hilo r state
10 smallest and largest observations on r

 r state

-3.570789 ms

-1.838577 la

-1.685598 ri

-1.303919 wa

 -1.14833 oh

 -1.12934 wi

-1.044952 co

-1.022727 mi

-.8699151 az

-.8520518 ut

 r state

8211724 mo

 1.01299 md

 1.028869 ne

 1.030343 sc

 1.076718 ks

 1.151702 il

 1.293477 id

 1.589644 ia

 2.619523 fl

 3.765847 dc

Let's show all of the variables in our regression where the studentized residual exceeds +2 or -2, i.e., where the absolute value of the residual exceeds 2. We see the data for the three potential outliers we identified, namely Florida, Mississippi and Washington D.C. Looking carefully at these three observations, we couldn't find any data entry error, though we may want to do another regression analysis with the extreme point such as DC deleted. We will return to this issue later.

list r crime pctmetro poverty single if abs(r) > 2
 r crime pctmetro poverty single

 1. -3.570789 434 30.7 24.7 14.7

 50. 2.619523 1206 93 17.8 10.6

 51. 3.765847 2922 100 26.4 22.1

Now let's look at the leverage's to identify observations that will have potential great influence on regression coefficient estimates.

predict lev, leverage

stem lev
Stem-and-leaf plot for l (Leverage)

l rounded to nearest multiple of .001

plot in units of .001

 0** | 20,24,24,28,29,29,31,31,32,32,34,35,37,38,39,43,45,45,46,47,49

 0** | 50,57,60,61,62,63,63,64,64,67,72,72,73,76,76,82,83,85,85,85,91,95

 1** | 00,02,36

 1** | 65,80,91

 2** |

 2** | 61

 3** |

 3** |

 4** |

 4** |

 5** | 36

We use the show(5) high options on the hilo command to show just the 5 largest observations (the high option can be abbreviated as h). We see that DC has the largest leverage.

hilo lev state, show(5) high
5 largest observations on lev

 lev state

1652769 la

1802005 wv

191012 ms

2606759 ak

536383 dc

Generally, a point with leverage greater than (2k+2)/n should be carefully examined. Here k is the number of predictors and n is the number of observations. In our example, we can do the following.

display (2*3+2)/51
15686275

list crime pctmetro poverty single state lev if lev >.156
 crime pctmetro poverty single state lev

 5. 208 41.8 22.2 9.4 wv .1802005

 48. 761 41.8 9.1 14.3 ak .2606759

 49. 434 30.7 24.7 14.7 ms .191012

 50. 1062 75 26.4 14.9 la .1652769

 51. 2922 100 26.4 22.1 dc .536383

As we have seen, DC is an observation that both has a large residual and large leverage. Such points are potentially the most influential. We can make a plot that shows the leverage by the residual squared and look for observations that are jointly high on both of these measures. We can do this using the lvr2plot command. lvr2plot stands for leverage versus residual squared plot. Using residual squared instead of residual itself, the graph is restricted to the first quadrant and the relative positions of data points are preserved. This is a quick way of checking potential influential observations and outliers at the same time. Both types of points are of great concern for us.

lvr2plot, mlabel(state)
 [image: image20.png]
The two reference lines are the means for leverage, horizontal, and for the normalized residual squared, vertical. The points that immediately catch our attention is DC (with the largest leverage) and MS (with the largest residual squared). We'll look at those observations more carefully by listing them.

list state crime pctmetro poverty single if state=="dc" | state=="ms"
 state crime pctmetro poverty single

 49. ms 434 30.7 24.7 14.7

 51. dc 2922 100 26.4 22.1

Now let's move on to overall measures of influence, specifically let's look at Cook's D and DFITS. These measures both combine information on the residual and leverage. Cook's D and DFITS are very similar except that they scale differently but they give us similar answers.

The lowest value that Cook's D can assume is zero, and the higher the Cook's D is, the more influential the point. The convention cut-off point is 4/n. We can list any observation above the cut-off point by doing the following. We do see that the Cook's D for DC is by far the largest.

predict d, cooksd
list crime pctmetro poverty single state d if d>4/51
 crime pctmetro poverty single state d

 1. 434 30.7 24.7 14.7 ms .602106

 2. 1062 75 26.4 14.9 la .1592638

 50. 1206 93 17.8 10.6 fl .173629

 51. 2922 100 26.4 22.1 dc 3.203429

Now let's take a look at DFITS. The cut-off point for DFITS is 2*sqrt(k/n). DFITS can be either positive or negative, with numbers close to zero corresponding to the points with small or zero influence. As we see, dfit also indicates that DC is, by far, the most influential observation.

predict dfit, dfits
list crime pctmetro poverty single state dfit if abs(dfit)>2*sqrt(3/51)
 crime pctmetro poverty single state dfit

 18. 1206 93 17.8 10.6 fl .8838196

 49. 434 30.7 24.7 14.7 ms -1.735096

 50. 1062 75 26.4 14.9 la -.8181195

 51. 2922 100 26.4 22.1 dc 4.050611

The above measures are general measures of influence. You can also consider more specific measures of influence that assess how each coefficient is changed by deleting the observation. This measure is called DFBETA and is created for each of the predictors. Apparently this is more computational intensive than summary statistics such as Cook's D since the more predictors a model has, the more computation it may involve. We can restrict our attention to only those predictors that we are most concerned with to see how well behaved those predictors are. In Stata, the dfbeta command will produce the DFBETAs for each of the predictors. The names for the new variables created are chosen by Stata automatically and begin with the letters DF.

dfbeta
 DFpctmetro: DFbeta(pctmetro)

 DFpoverty: DFbeta(poverty)

 DFsingle: DFbeta(single)

This created three variables, DFpctmetro, DFpoverty and DFsingle. Let's look at the first 5 values.

list state DFpctmetro DFpoverty DFsingle in 1/5
 state DFpctme~o DFpoverty DFsingle

 1. ak -.1061846 -.1313398 .1451826

 2. al .0124287 .0552852 -.0275128

 3. ar -.0687483 .1753482 -.1052626

 4. az -.0947614 -.0308833 .001242

 5. ca .0126401 .0088009 -.0036361

The value for DFsingle for Alaska is .14, which means that by being included in the analysis (as compared to being excluded), Alaska increases the coefficient for single by 0.14 standard errors, i.e., .14 times the standard error for BSingle or by (0.14 * 15.5). Since the inclusion of an observation could either contribute to an increase or decrease in a regression coefficient, DFBETAs can be either positive or negative. A DFBETA value in excess of 2/sqrt(n) merits further investigation. In this example, we would be concerned about absolute values in excess of 2/sqrt(51) or .28.

We can plot all three DFBETA values against the state id in one graph shown below. We add a line at .28 and -.28 to help us see potentially troublesome observations. We see the largest value is about 3.0 for DFsingle.

scatter DFpctmetro DFpoverty DFsingle sid, ylabel(-1(.5)3) yline(.28 -.28)
 [image: image21.png]
We can repeat this graph with the mlabel() option in the graph command to label the points. With the graph above we can identify which DFBeta is a problem, and with the graph below we can associate that observation with the state that it originates from.

scatter DFpctmetro DFpoverty DFsingle sid, ylabel(-1(.5)3) yline(.28 -.28) ///

 mlabel(state state state)
[image: image22.png]
Now let's list those observations with DFsingle larger than the cut-off value.

list DFsingle state crime pctmetro poverty single if abs(DFsingle) > 2/sqrt(51)
 DFsingle state crime pctmetro poverty single

 9. -.5606022 fl 1206 93 17.8 10.6

 25. -.5680245 ms 434 30.7 24.7 14.7

 51. 3.139084 dc 2922 100 26.4 22.1

The following table summarizes the general rules of thumb we use for these measures to identify observations worthy of further investigation (where k is the number of predictors and n is the number of observations).

	Measure
	Value

	leverage
	>(2k+2)/n

	abs(rstu)
	> 2

	Cook's D
	> 4/n

	abs(DFITS)
	> 2*sqrt(k/n)

	abs(DFBETA)
	> 2/sqrt(n)

We have used the predict command to create a number of variables associated with regression analysis and regression diagnostics. The help regress command not only gives help on the regress command, but also lists all of the statistics that can be generated via the predict command. Below we show a snippet of the Stata help file illustrating the various statistics that can be computed via the predict command.

help regress

help for regress (manual: [R] regress)

<--output omitted-->

The syntax of predict following regress is

 predict [type] newvarname [if exp] [in range] [, statistic]

where statistic is

 xb fitted values; the default

 pr(a,b) Pr(y |a>y>b) (a and b may be numbers

 e(a,b) E(y |a>y>b) or variables; a==. means

 ystar(a,b) E(y*) -inf; b==. means inf)

 cooksd Cook's distance

 leverage | hat leverage (diagonal elements of hat matrix)

 residuals residuals

 rstandard standardized residuals

 rstudent Studentized (jackknifed) residuals

 stdp standard error of the prediction

 stdf standard error of the forecast

 stdr standard error of the residual

 (*) covratio COVRATIO

 (*) dfbeta(varname) DFBETA for varname

 (*) dfits DFITS

 (*) welsch Welsch distance

Unstarred statistics are available both in and out of sample; type "predict ...

if e(sample) ..." if wanted only for the estimation sample. Starred statistics

are calculated for the estimation sample even when "if e(sample)" is not speci-

fied.

<--more output omitted here.-->

We have explored a number of the statistics that we can get after the regress command. There are also several graphs that can be used to search for unusual and influential observations. The avplot command graphs an added-variable plot. It is also called a partial-regression plot and is very useful in identifying influential points. For example, in the avplot for single shown below, the graph shows crime by single after both crime and single have been adjusted for all other predictors in the model. The line plotted has the same slope as the coefficient for single. This plot shows how the observation for DC influences the coefficient. You can see how the regression line is tugged upwards trying to fit through the extreme value of DC. Alaska and West Virginia may also exert substantial leverage on the coefficient of single.

avplot single, mlabel(state)
 [image: image23.png]
Stata also has the avplots command that creates an added variable plot for all of the variables, which can be very useful when you have many variables. It does produce small graphs, but these graphs can quickly reveal whether you have problematic observations based on the added variable plots.

avplots
 [image: image24.png]
DC has appeared as an outlier as well as an influential point in every analysis. Since DC is really not a state, we can use this to justify omitting it from the analysis saying that we really wish to just analyze states. First, let's repeat our analysis including DC by just typing regress.

regress
 Source | SS df MS Number of obs = 51

---------+------------------------------ F(3, 47) = 82.16

 Model | 8170480.21 3 2723493.40 Prob > F = 0.0000

Residual | 1557994.53 47 33148.8199 R-squared = 0.8399

---------+------------------------------ Adj R-squared = 0.8296

 Total | 9728474.75 50 194569.495 Root MSE = 182.07

--

 crime | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

pctmetro | 7.828935 1.254699 6.240 0.000 5.304806 10.35306

 poverty | 17.68024 6.94093 2.547 0.014 3.716893 31.64359

 single | 132.4081 15.50322 8.541 0.000 101.2196 163.5965

 _cons | -1666.436 147.852 -11.271 0.000 -1963.876 -1368.996

--

Now, let's run the analysis omitting DC by including if state != "dc" on the regress command (here != stands for "not equal to" but you could also use ~= to mean the same thing). As we expect, deleting DC made a large change in the coefficient for single. The coefficient for single dropped from 132.4 to 89.4. After having deleted DC, we would repeat the process we have illustrated in this section to search for any other outlying and influential observations.

regress crime pctmetro poverty single if state!="dc"
 Source | SS df MS Number of obs = 50

---------+------------------------------ F(3, 46) = 39.90

 Model | 3098767.11 3 1032922.37 Prob > F = 0.0000

Residual | 1190858.11 46 25888.2199 R-squared = 0.7224

---------+------------------------------ Adj R-squared = 0.7043

 Total | 4289625.22 49 87543.3718 Root MSE = 160.90

--

 crime | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

pctmetro | 7.712334 1.109241 6.953 0.000 5.479547 9.94512

 poverty | 18.28265 6.135958 2.980 0.005 5.931611 30.6337

 single | 89.40078 17.83621 5.012 0.000 53.49836 125.3032

 _cons | -1197.538 180.4874 -6.635 0.000 -1560.84 -834.2358

--

Finally, we showed that the avplot command can be used to searching for outliers among existing variables in your model, but we should note that the avplot command not only works for the variables in the model, it also works for variables that are not in the model, which is why it is called added-variable plot. Let's use the regression that includes DC as we want to continue to see ill-behavior caused by DC as a demonstration for doing regression diagnostics. We can do an avplot on variable pctwhite.

regress crime pctmetro poverty single

avplot pctwhite
[image: image25.png]
At the top of the plot, we have "coef=-3.509". It is the coefficient for pctwhite if it were put in the model. We can check that by doing a regression as below.

regress crime pctmetro pctwhite poverty single
 Source | SS df MS Number of obs = 51

---------+------------------------------ F(4, 46) = 63.07

 Model | 8228138.87 4 2057034.72 Prob > F = 0.0000

Residual | 1500335.87 46 32615.9972 R-squared = 0.8458

---------+------------------------------ Adj R-squared = 0.8324

 Total | 9728474.75 50 194569.495 Root MSE = 180.60

--

 crime | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

pctmetro | 7.404075 1.284941 5.762 0.000 4.817623 9.990526

pctwhite | -3.509082 2.639226 -1.330 0.190 -8.821568 1.803404

 poverty | 16.66548 6.927095 2.406 0.020 2.721964 30.609

 single | 120.3576 17.8502 6.743 0.000 84.42702 156.2882

 _cons | -1191.689 386.0089 -3.087 0.003 -1968.685 -414.6936

--

Summary

In this section, we explored a number of methods of identifying outliers and influential points. In a typical analysis, you would probably use only some of these methods. Generally speaking, there are two types of methods for assessing outliers: statistics such as residuals, leverage, Cook's D and DFITS, that assess the overall impact of an observation on the regression results, and statistics such as DFBETA that assess the specific impact of an observation on the regression coefficients.

In our example, we found that DC was a point of major concern. We performed a regression with it and without it and the regression equations were very different. We can justify removing it from our analysis by reasoning that our model is to predict crime rate for states, not for metropolitan areas.

2.2 Checking Normality of Residuals

Many researchers believe that multiple regression requires normality. This is not the case. Normality of residuals is only required for valid hypothesis testing, that is, the normality assumption assures that the p-values for the t-tests and F-test will be valid. Normality is not required in order to obtain unbiased estimates of the regression coefficients. OLS regression merely requires that the residuals (errors) be identically and independently distributed. Furthermore, there is no assumption or requirement that the predictor variables be normally distributed. If this were the case than we would not be able to use dummy coded variables in our models.

After we run a regression analysis, we can use the predict command to create residuals and then use commands such as kdensity, qnorm and pnorm to check the normality of the residuals.

Let's use the elemapi2 data file we saw in Chapter 1 for these analyses. Let's predict academic performance (api00) from percent receiving free meals (meals), percent of English language learners (ell), and percent of teachers with emergency credentials (emer).

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2

regress api00 meals ell emer
 Source | SS df MS Number of obs = 400

---------+------------------------------ F(3, 396) = 673.00

 Model | 6749782.75 3 2249927.58 Prob > F = 0.0000

Residual | 1323889.25 396 3343.15467 R-squared = 0.8360

---------+------------------------------ Adj R-squared = 0.8348

 Total | 8073672.00 399 20234.7669 Root MSE = 57.82

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 meals | -3.159189 .1497371 -21.098 0.000 -3.453568 -2.864809

 ell | -.9098732 .1846442 -4.928 0.000 -1.272878 -.5468678

 emer | -1.573496 .293112 -5.368 0.000 -2.149746 -.9972456

 _cons | 886.7033 6.25976 141.651 0.000 874.3967 899.0098

--

We then use the predict command to generate residuals.

predict r, resid
Below we use the kdensity command to produce a kernel density plot with the normal option requesting that a normal density be overlaid on the plot. kdensity stands for kernel density estimate. It can be thought of as a histogram with narrow bins and moving average.

kdensity r, normal
 [image: image26.png]
The pnorm command graphs a standardized normal probability (P-P) plot while qnorm plots the quantiles of a variable against the quantiles of a normal distribution. pnorm is sensitive to non-normality in the middle range of data and qnorm is sensitive to non-normality near the tails. As you see below, the results from pnorm show no indications of non-normality, while the qnorm command shows a slight deviation from normal at the upper tail, as can be seen in the kdensity above. Nevertheless, this seems to be a minor and trivial deviation from normality. We can accept that the residuals are close to a normal distribution.

pnorm r
[image: image27.png]
qnorm r
[image: image28.png]
There are also numerical tests for testing normality. One of the tests is the test written by Lawrence C. Hamilton, Dept. of Sociology, Univ. of New Hampshire, called iqr. You can get this program from Stata by typing findit iqr (see How can I used the findit command to search for programs and get additional help? for more information about using findit).

iqr stands for inter-quartile range and assumes the symmetry of the distribution. Severe outliers consist of those points that are either 3 inter-quartile-ranges below the first quartile or 3 inter-quartile-ranges above the third quartile. The presence of any severe outliers should be sufficient evidence to reject normality at a 5% significance level. Mild outliers are common in samples of any size. In our case, we don't have any severe outliers and the distribution seems fairly symmetric. The residuals have an approximately normal distribution.

iqr r
 mean= 7.4e-08 std.dev.= 57.6 (n= 400)

 median= -3.657 pseudo std.dev.= 56.69 (IQR= 76.47)

10 trim= -1.083

 low high

 inner fences -154.7 151.2

 # mild outliers 1 5

 % mild outliers 0.25% 1.25%

 outer fences -269.4 265.9

 # severe outliers 0 0

 % severe outliers 0.00% 0.00%

Another test available is the swilk test which performs the Shapiro-Wilk W test for normality. The p-value is based on the assumption that the distribution is normal. In our example, it is very large (.51), indicating that we cannot reject that r is normally distributed.

swilk r
 Shapiro-Wilk W test for normal data

 Variable | Obs W V z Pr > z

 ---------+---

 r | 400 0.99641 0.989 -0.025 0.51006

2.3 Checking Homoscedasticity

One of the main assumptions for the ordinary least squares regression is the homogeneity of variance of the residuals. If the model is well-fitted, there should be no pattern to the residuals plotted against the fitted values. If the variance of the residuals is non-constant then the residual variance is said to be "heteroscedastic." There are graphical and non-graphical methods for detecting heteroscedasticity. A commonly used graphical method is to plot the residuals versus fitted (predicted) values. We do this by issuing the rvfplot command. Below we use the rvfplot command with the yline(0) option to put a reference line at y=0. We see that the pattern of the data points is getting a little narrower towards the right end, which is an indication of mild heteroscedasticity.

rvfplot, yline(0)
[image: image29.png]
Now let's look at two commands that test for heteroscedasticity, hettest and whitetst. hettest is a built-in command, whereas the whitetst command needs to be downloaded within Stata from the internet. Both test the null hypothesis that the variance of the residuals is homogenous. Therefore, if the p-value is very small, we would have to reject the hypothesis and accept the alternative hypothesis that the variance is not homogenous.

Below we show the hettest command which does suggest that the data shows heteroscedasticity.

hettest
Cook-Weisberg test for heteroscedasticity using fitted values of api00

 Ho: Constant variance

 chi2(1) = 8.75

 Prob > chi2 = 0.0031

Next, we show how to download and run the whitetst command. This also tells us that there is an indication of heteroscedasticity. whitetst is somewhat less sensitive to outliers than hettest. You can download whitetst from within Stata by typing findit whitetst (see How can I used the findit command to search for programs and get additional help? for more information about using findit).

whitetst
White's general test statistic : 18.35276 Chi-sq(9) P-value = .0313

While both of these tests are significant, the distribution of the residuals in the rvfplot did not seem overly heteroscedastic.

Consider another example where we use enroll as a predictor. Recall that we found enroll to be skewed to the right in Chapter 1. As you can see, this example shows much more serious heteroscedasticity.

regress api00 enroll
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(1, 398) = 44.83

 Model | 817326.293 1 817326.293 Prob > F = 0.0000

 Residual | 7256345.70 398 18232.0244 R-squared = 0.1012

-------------+------------------------------ Adj R-squared = 0.0990

 Total | 8073672.00 399 20234.7669 Root MSE = 135.03

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 enroll | -.1998674 .0298512 -6.70 0.000 -.2585532 -.1411817

 _cons | 744.2514 15.93308 46.71 0.000 712.9279 775.5749

--

rvfplot
[image: image30.png]
As we saw in Chapter 1, the variable enroll was skewed considerably to the right, and we found that by taking a log transformation, the transformed variable was more normally distributed. Below we transform enroll, run the regression and show the residual versus fitted plot. The distribution of the residuals is much improved. Certainly, this is not a perfect distribution of residuals, but it is much better than the distribution with the untransformed variable.

generate lenroll = log(enroll)

regress api00 lenroll
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(1, 398) = 32.50

 Model | 609460.447 1 609460.447 Prob > F = 0.0000

 Residual | 7464211.55 398 18754.3004 R-squared = 0.0755

-------------+------------------------------ Adj R-squared = 0.0732

 Total | 8073672.00 399 20234.7669 Root MSE = 136.95

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 lenroll | -85.99991 15.08605 -5.70 0.000 -115.6582 -56.3416

 _cons | 1170.429 91.96567 12.73 0.000 989.6298 1351.228

--

rvfplot
[image: image31.png]
Finally, let's revisit the model we used at the start of this section, predicting api00 from meals, ell and emer. Using this model, the distribution of the residuals looked very nice and even across the fitted values. What if we add enroll to this model? Will this automatically ruin the distribution of the residuals? Let's add it and see.

regress api00 meals ell emer enroll
 Source | SS df MS Number of obs = 400

-------------+------------------------------ F(4, 395) = 510.63

 Model | 6765344.05 4 1691336.01 Prob > F = 0.0000

 Residual | 1308327.95 395 3312.22265 R-squared = 0.8380

-------------+------------------------------ Adj R-squared = 0.8363

 Total | 8073672.00 399 20234.7669 Root MSE = 57.552

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 meals | -3.22166 .151804 -21.22 0.000 -3.520105 -2.923215

 ell | -.7677037 .1951414 -3.93 0.000 -1.151349 -.384058

 emer | -1.418238 .3004172 -4.72 0.000 -2.008854 -.8276212

 enroll | -.031258 .0144211 -2.17 0.031 -.0596096 -.0029063

 _cons | 899.1466 8.472245 106.13 0.000 882.4903 915.8029

--

rvfplot
[image: image32.png]
As you can see, the distribution of the residuals looks fine, even after we added the variable enroll. When we had just the variable enroll in the model, we did a log transformation to improve the distribution of the residuals, but when enroll was part of a model with other variables, the residuals looked good so no transformation was needed. This illustrates how the distribution of the residuals, not the distribution of the predictor, was the guiding factor in determining whether a transformation was needed.

2.4 Checking for Multicollinearity

When there is a perfect linear relationship among the predictors, the estimates for a regression model cannot be uniquely computed. The term collinearity implies that two variables are near perfect linear combinations of one another. When more than two variables are involved it is often called multicollinearity, although the two terms are often used interchangeably.

The primary concern is that as the degree of multicollinearity increases, the regression model estimates of the coefficients become unstable and the standard errors for the coefficients can get wildly inflated. In this section, we will explore some Stata commands that help to detect multicollinearity.

We can use the vif command after the regression to check for multicollinearity. vif stands for variance inflation factor. As a rule of thumb, a variable whose VIF values are greater than 10 may merit further investigation. Tolerance, defined as 1/VIF, is used by many researchers to check on the degree of collinearity. A tolerance value lower than 0.1 is comparable to a VIF of 10. It means that the variable could be considered as a linear combination of other independent variables. Let's first look at the regression we did from the last section, the regression model predicting api00 from meals, ell and emer and then issue the vif command.

regress api00 meals ell emer
<-- output omitted -->

vif
Variable | VIF 1/VIF

---------+----------------------

 meals | 2.73 0.366965

 ell | 2.51 0.398325

 emer | 1.41 0.706805

---------+----------------------

Mean VIF | 2.22

The VIFs look fine here. Here is an example where the VIFs are more worrisome.

regress api00 acs_k3 avg_ed grad_sch col_grad some_col
 Source | SS df MS Number of obs = 379

---------+------------------------------ F(5, 373) = 143.79

 Model | 5056268.54 5 1011253.71 Prob > F = 0.0000

Residual | 2623191.21 373 7032.68421 R-squared = 0.6584

---------+------------------------------ Adj R-squared = 0.6538

 Total | 7679459.75 378 20316.0311 Root MSE = 83.861

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 acs_k3 | 11.45725 3.275411 3.498 0.001 5.01667 17.89784

 avg_ed | 227.2638 37.2196 6.106 0.000 154.0773 300.4504

grad_sch | -2.090898 1.352292 -1.546 0.123 -4.749969 .5681734

col_grad | -2.967831 1.017812 -2.916 0.004 -4.969199 -.9664627

some_col | -.7604543 .8109676 -0.938 0.349 -2.355096 .8341871

 _cons | -82.60913 81.84638 -1.009 0.313 -243.5473 78.32903

--

vif
Variable | VIF 1/VIF

---------+----------------------

 avg_ed | 43.57 0.022951

grad_sch | 14.86 0.067274

col_grad | 14.78 0.067664

some_col | 4.07 0.245993

 acs_k3 | 1.03 0.971867

---------+----------------------

Mean VIF | 15.66

In this example, the VIF and tolerance (1/VIF) values for avg_ed grad_sch and col_grad are worrisome. All of these variables measure education of the parents and the very high VIF values indicate that these variables are possibly redundant. For example, after you know grad_sch and col_grad, you probably can predict avg_ed very well. In this example, multicollinearity arises because we have put in too many variables that measure the same thing, parent education.

Let's omit one of the parent education variables, avg_ed. Note that the VIF values in the analysis below appear much better. Also, note how the standard errors are reduced for the parent education variables, grad_sch and col_grad. This is because the high degree of collinearity caused the standard errors to be inflated. With the multicollinearity eliminated, the coefficient for grad_sch, which had been non-significant, is now significant.

regress api00 acs_k3 grad_sch col_grad some_col
 Source | SS df MS Number of obs = 398

---------+------------------------------ F(4, 393) = 107.12

 Model | 4180144.34 4 1045036.09 Prob > F = 0.0000

Residual | 3834062.79 393 9755.88497 R-squared = 0.5216

---------+------------------------------ Adj R-squared = 0.5167

 Total | 8014207.14 397 20186.9197 Root MSE = 98.772

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 acs_k3 | 11.7126 3.664872 3.196 0.002 4.507392 18.91781

grad_sch | 5.634762 .4581979 12.298 0.000 4.733937 6.535588

col_grad | 2.479916 .3395548 7.303 0.000 1.812345 3.147487

some_col | 2.158271 .4438822 4.862 0.000 1.28559 3.030952

 _cons | 283.7446 70.32475 4.035 0.000 145.4849 422.0044

--

vif
Variable | VIF 1/VIF

---------+----------------------

col_grad | 1.28 0.782726

grad_sch | 1.26 0.792131

some_col | 1.03 0.966696

 acs_k3 | 1.02 0.976666

---------+----------------------

Mean VIF | 1.15

Let's introduce another command on collinearity. The collin command displays several different measures of collinearity. For example, we can test for collinearity among the variables we used in the two examples above. Note that the collin command does not need to be run in connection with a regress command, unlike the vif command which follows a regress command. Also note that only predictor (independent) variables are used with the collin command. You can download collin from within Stata by typing findit collin (see How can I used the findit command to search for programs and get additional help? for more information about using findit).

collin acs_k3 avg_ed grad_sch col_grad some_col
 Collinearity Diagnostics

 SQRT Cond

 Variable VIF VIF Tolerance Eigenval Index

 acs_k3 1.03 1.01 0.9719 2.4135 1.0000

 avg_ed 43.57 6.60 0.0230 1.0917 1.4869

 grad_sch 14.86 3.86 0.0673 0.9261 1.6144

 col_grad 14.78 3.84 0.0677 0.5552 2.0850

 some_col 4.07 2.02 0.2460 0.0135 13.3729

 Mean VIF 15.66 Condition Number 13.3729

We now remove avg_ed and see the collinearity diagnostics improve considerably.

collin acs_k3 grad_sch col_grad some_col
 Collinearity Diagnostics

 SQRT Cond

 Variable VIF VIF Tolerance Eigenval Index

 acs_k3 1.02 1.01 0.9767 1.5095 1.0000

 grad_sch 1.26 1.12 0.7921 1.0407 1.2043

 col_grad 1.28 1.13 0.7827 0.9203 1.2807

 some_col 1.03 1.02 0.9667 0.5296 1.6883

 Mean VIF 1.15 Condition Number 1.6883

The condition number is a commonly used index of the global instability of the regression coefficients -- a large condition number, 10 or more, is an indication of instability.

 2.5 Checking Linearity

When we do linear regression, we assume that the relationship between the response variable and the predictors is linear. This is the assumption of linearity. If this assumption is violated, the linear regression will try to fit a straight line to data that does not follow a straight line. Checking the linear assumption in the case of simple regression is straightforward, since we only have one predictor. All we have to do is a scatter plot between the response variable and the predictor to see if nonlinearity is present, such as a curved band or a big wave-shaped curve. For example, recall we did a simple linear regression in Chapter 1 using dataset elemapi2.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2

regress api00 enroll
 Source | SS df MS Number of obs = 400

---------+------------------------------ F(1, 398) = 44.83

 Model | 817326.293 1 817326.293 Prob > F = 0.0000

Residual | 7256345.70 398 18232.0244 R-squared = 0.1012

---------+------------------------------ Adj R-squared = 0.0990

 Total | 8073672.00 399 20234.7669 Root MSE = 135.03

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 enroll | -.1998674 .0298512 -6.695 0.000 -.2585532 -.1411817

 _cons | 744.2514 15.93308 46.711 0.000 712.9279 775.5749

--

Below we use the scatter command to show a scatterplot predicting api00 from enroll and use lfit to show a linear fit, and then lowess to show a lowess smoother predicting api00 from enroll. We clearly see some degree of nonlinearity.

twoway (scatter api00 enroll) (lfit api00 enroll) (lowess api00 enroll)
[image: image33.png]
Checking the linearity assumption is not so straightforward in the case of multiple regression. We will try to illustrate some of the techniques that you can use. The most straightforward thing to do is to plot the standardized residuals against each of the predictor variables in the regression model. If there is a clear nonlinear pattern, there is a problem of nonlinearity. Otherwise, we should see for each of the plots just a random scatter of points. Let's continue to use dataset elemapi2 here. Let's use a different model.

regress api00 meals some_col
 Source | SS df MS Number of obs = 400

---------+------------------------------ F(2, 397) = 877.98

 Model | 6584905.75 2 3292452.87 Prob > F = 0.0000

Residual | 1488766.25 397 3750.04094 R-squared = 0.8156

---------+------------------------------ Adj R-squared = 0.8147

 Total | 8073672.00 399 20234.7669 Root MSE = 61.238

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 meals | -3.949 .0984576 -40.109 0.000 -4.142563 -3.755436

some_col | .8476549 .2771428 3.059 0.002 .302804 1.392506

 _cons | 869.097 9.417734 92.283 0.000 850.5822 887.6119

--

predict r, resid
scatter r meals
[image: image34.png]
scatter r some_col
[image: image35.png]
The two residual versus predictor variable plots above do not indicate strongly a clear departure from linearity. Another command for detecting non-linearity is acprplot. acprplot graphs an augmented component-plus-residual plot, a.k.a. augmented partial residual plot. It can be used to identify nonlinearities in the data. Let's use the acprplot command for meals and some_col and use the lowess lsopts(bwidth(1)) options to request lowess smoothing with a bandwidth of 1.

In the first plot below the smoothed line is very close to the ordinary regression line, and the entire pattern seems pretty uniform. The second plot does seem more problematic at the right end. This may come from some potential influential points. Overall, they don't look too bad and we shouldn't be too concerned about non-linearities in the data.

acprplot meals, lowess lsopts(bwidth(1))
[image: image36.png]
acprplot some_col, lowess lsopts(bwidth(1))
[image: image37.png]
We have seen how to use acprplot to detect nonlinearity. However our last example didn't show much nonlinearity. Let's look at a more interesting example. This example is taken from "Statistics with Stata 5" by Lawrence C. Hamilton (1997, Duxbery Press). The dataset we will use is called nations.dta. We can get the dataset from the Internet.

use http://www.ats.ucla.edu/stat/stata/examples/sws5/nations
(Data on 109 countries)

describe
Contains data from http://www.ats.ucla.edu/stat/stata/examples/sws5/nations.dta

 obs: 109 Data on 109 countries

 vars: 15 22 Dec 1996 20:12

 size: 4,033 (98.3% of memory free)

 1. country str8 %9s Country

 2. pop float %9.0g 1985 population in millions

 3. birth byte %8.0g Crude birth rate/1000 people

 4. death byte %8.0g Crude death rate/1000 people

 5. chldmort byte %8.0g Child (1-4 yr) mortality 1985

 6. infmort int %8.0g Infant (<1 yr) mortality 1985

 7. life byte %8.0g Life expectancy at birth 1985

 8. food int %8.0g Per capita daily calories 1985

 9. energy int %8.0g Per cap energy consumed, kg oil

 10. gnpcap int %8.0g Per capita GNP 1985

 11. gnpgro float %9.0g Annual GNP growth % 65-85

 12. urban byte %8.0g % population urban 1985

 13. school1 int %8.0g Primary enrollment % age-group

 14. school2 byte %8.0g Secondary enroll % age-group

 15. school3 byte %8.0g Higher ed. enroll % age-group

Sorted by:

Let's build a model that predicts birth rate (birth), from per capita gross national product (gnpcap), and urban population (urban). If this were a complete regression analysis, we would start with examining the variables, but for the purpose of illustrating nonlinearity, we will jump directly to the regression.

regress birth gnpcap urban
 Source | SS df MS Number of obs = 108

---------+------------------------------ F(2, 105) = 64.22

 Model | 10796.488 2 5398.24399 Prob > F = 0.0000

Residual | 8825.5861 105 84.053201 R-squared = 0.5502

---------+------------------------------ Adj R-squared = 0.5417

 Total | 19622.0741 107 183.38387 Root MSE = 9.1681

--

 birth | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 gnpcap | -.000842 .0002637 -3.193 0.002 -.0013649 -.0003191

 urban | -.2823184 .0462191 -6.108 0.000 -.3739624 -.1906744

 _cons | 48.85603 1.986909 24.589 0.000 44.91635 52.7957

--

Now, let's do the acprplot on our predictors.

acprplot gnpcap, lowess
[image: image38.png]
acprplot urban
[image: image39.png]
The acprplot plot for gnpcap shows clear deviation from linearity and the one for urban does not show nearly as much deviation from linearity. Now, let's look at these variables more closely.

graph matrix birth gnpcap urban, half
[image: image40.png]
We see that the relation between birth rate and per capita gross national product is clearly nonlinear and the relation between birth rate and urban population is not too far off from being linear. So let's focus on variable gnpcap. First let's look at the distribution of gnpcap. We suspect that gnpcap may be very skewed. This may affect the appearance of the acprplot.

kdensity gnpcap, normal
[image: image41.png]
Indeed, it is very skewed. This suggests to us that some transformation of the variable may be necessary. One of the commonly used transformations is log transformation. Let's try it here.

generate lggnp=log(gnpcap)

label variable lggnp "log-10 of gnpcap"

kdensity lggnp, normal
[image: image42.png]
The transformation does seem to help correct the skewness greatly. Next, let's do the regression again replacing gnpcap by lggnp.

regress birth lggnp urban
 Source | SS df MS Number of obs = 108

---------+------------------------------ F(2, 105) = 76.20

 Model | 11618.0395 2 5809.01974 Prob > F = 0.0000

Residual | 8004.0346 105 76.2289009 R-squared = 0.5921

---------+------------------------------ Adj R-squared = 0.5843

 Total | 19622.0741 107 183.38387 Root MSE = 8.7309

--

 birth | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 lggnp | -4.877688 1.039477 -4.692 0.000 -6.93878 -2.816596

 urban | -.156254 .0579632 -2.696 0.008 -.2711843 -.0413237

 _cons | 74.87778 5.439654 13.765 0.000 64.09196 85.66361

--

acprplot lggnp, lowess
[image: image43.png]
The plot above shows less deviation from nonlinearity than before, though the problem of nonlinearity has not been completely solved yet.

2.6 Model Specification

A model specification error can occur when one or more relevant variables are omitted from the model or one or more irrelevant variables are included in the model. If relevant variables are omitted from the model, the common variance they share with included variables may be wrongly attributed to those variables, and the error term is inflated. On the other hand, if irrelevant variables are included in the model, the common variance they share with included variables may be wrongly attributed to them. Model specification errors can substantially affect the estimate of regression coefficients.

Consider the model below. This regression suggests that as class size increases the academic performance increases. Before we publish results saying that increased class size is associated with higher academic performance, let's check the model specification.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2

regress api00 acs_k3
 Source | SS df MS Number of obs = 398

-------------+------------------------------ F(1, 396) = 11.93

 Model | 234353.831 1 234353.831 Prob > F = 0.0006

 Residual | 7779853.31 396 19646.0942 R-squared = 0.0292

-------------+------------------------------ Adj R-squared = 0.0268

 Total | 8014207.14 397 20186.9197 Root MSE = 140.16

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 acs_k3 | 17.75148 5.139688 3.45 0.001 7.646998 27.85597

 _cons | 308.3372 98.73085 3.12 0.002 114.235 502.4393

--

There are a couple of methods to detect specification errors. The linktest command performs a model specification link test for single-equation models. linktest is based on the idea that if a regression is properly specified, one should not be able to find any additional independent variables that are significant except by chance. linktest creates two new variables, the variable of prediction, _hat, and the variable of squared prediction, _hatsq. The model is then refit using these two variables as predictors. _hat should be significant since it is the predicted value. On the other hand, _hatsq shouldn't, because if our model is specified correctly, the squared predictions should not have much explanatory power. That is we wouldn't expect _hatsq to be a significant predictor if our model is specified correctly. So we will be looking at the p-value for _hatsq.

linktest
 Source | SS df MS Number of obs = 398

-------------+------------------------------ F(2, 395) = 7.09

 Model | 277705.911 2 138852.955 Prob > F = 0.0009

 Residual | 7736501.23 395 19586.0791 R-squared = 0.0347

-------------+------------------------------ Adj R-squared = 0.0298

 Total | 8014207.14 397 20186.9197 Root MSE = 139.95

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _hat | -11.05006 8.104639 -1.36 0.174 -26.98368 4.883562

 _hatsq | .0093318 .0062724 1.49 0.138 -.0029996 .0216631

 _cons | 3884.48 2617.695 1.48 0.139 -1261.877 9030.837

--

From the above linktest, the test of _hatsq is not significant. This is to say that linktest has failed to reject the assumption that the model is specified correctly. Therefore, it seems to us that we don't have a specification error. But now, let's look at another test before we jump to the conclusion.

The ovtest command performs another test of regression model specification. It performs a regression specification error test (RESET) for omitted variables. The idea behind ovtest is very similar to linktest. It also creates new variables based on the predictors and refits the model using those new variables to see if any of them would be significant. Let's try ovtest on our model.

ovtest
Ramsey RESET test using powers of the fitted values of api00

 Ho: model has no omitted variables

 F(3, 393) = 4.13

 Prob > F = 0.0067

The ovtest command indicates that there are omitted variables. So we have tried both the linktest and ovtest, and one of them (ovtest) tells us that we have a specification error. We therefore have to reconsider our model.

Let's try adding the variable full to the model. Now, both the linktest and ovtest are significant, indicating we have a specification error.

regress api00 acs_k3 full
 Source | SS df MS Number of obs = 398

-------------+------------------------------ F(2, 395) = 101.19

 Model | 2715101.89 2 1357550.95 Prob > F = 0.0000

 Residual | 5299105.24 395 13415.4563 R-squared = 0.3388

-------------+------------------------------ Adj R-squared = 0.3354

 Total | 8014207.14 397 20186.9197 Root MSE = 115.83

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 acs_k3 | 8.355681 4.303023 1.94 0.053 -.1040088 16.81537

 full | 5.389788 .3963539 13.60 0.000 4.610561 6.169015

 _cons | 32.21346 84.07525 0.38 0.702 -133.0775 197.5044

--

linktest
 Source | SS df MS Number of obs = 398

-------------+------------------------------ F(2, 395) = 108.32

 Model | 2838564.40 2 1419282.20 Prob > F = 0.0000

 Residual | 5175642.74 395 13102.893 R-squared = 0.3542

-------------+------------------------------ Adj R-squared = 0.3509

 Total | 8014207.14 397 20186.9197 Root MSE = 114.47

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _hat | -1.868895 .9371889 -1.99 0.047 -3.711397 -.0263936

 _hatsq | .0023436 .0007635 3.07 0.002 .0008426 .0038447

 _cons | 858.8726 283.4594 3.03 0.003 301.5948 1416.15

--

ovtest
Ramsey RESET test using powers of the fitted values of api00

 Ho: model has no omitted variables

 F(3, 392) = 4.09

 Prob > F = 0.0071

Let's try adding one more variable, meals, to the above model.

regress api00 acs_k3 full meals
 Source | SS df MS Number of obs = 398

-------------+------------------------------ F(3, 394) = 615.55

 Model | 6604966.18 3 2201655.39 Prob > F = 0.0000

 Residual | 1409240.96 394 3576.7537 R-squared = 0.8242

-------------+------------------------------ Adj R-squared = 0.8228

 Total | 8014207.14 397 20186.9197 Root MSE = 59.806

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 acs_k3 | -.7170622 2.238821 -0.32 0.749 -5.118592 3.684468

 full | 1.327138 .2388739 5.56 0.000 .857511 1.796765

 meals | -3.686265 .1117799 -32.98 0.000 -3.906024 -3.466505

 _cons | 771.6581 48.86071 15.79 0.000 675.5978 867.7184

--

linktest
 Source | SS df MS Number of obs = 398

-------------+------------------------------ F(2, 395) = 931.68

 Model | 6612479.76 2 3306239.88 Prob > F = 0.0000

 Residual | 1401727.38 395 3548.67691 R-squared = 0.8251

-------------+------------------------------ Adj R-squared = 0.8242

 Total | 8014207.14 397 20186.9197 Root MSE = 59.571

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 _hat | 1.42433 .2925374 4.87 0.000 .849205 1.999455

 _hatsq | -.0003172 .000218 -1.46 0.146 -.0007458 .0001114

 _cons | -136.5102 95.05904 -1.44 0.152 -323.3951 50.3747

--

ovtest
Ramsey RESET test using powers of the fitted values of api00

 Ho: model has no omitted variables

 F(3, 391) = 2.56

 Prob > F = 0.0545

The linktest is once again non-significant while the p-value for ovtest is slightly greater than .05. Note that after including meals and full, the coefficient for class size is no longer significant. While acs_k3 does have a positive relationship with api00 when no other variables are in the model, when we include, and hence control for, other important variables, acs_k3 is no longer significantly related to api00 and its relationship to api00 is no longer positive.

linktest and ovtest are tools available in Stata for checking specification errors, though linktest can actually do more than check omitted variables as we used here, e.g., checking the correctness of link function specification. For more details on those tests, please refer to Stata manual.

2.7 Issues of Independence

The statement of this assumption that the errors associated with one observation are not correlated with the errors of any other observation cover several different situations. Consider the case of collecting data from students in eight different elementary schools. It is likely that the students within each school will tend to be more like one another than students from different schools, that is, their errors are not independent. We will deal with this type of situation in Chapter 4 when we demonstrate the regress command with cluster option.

Another way in which the assumption of independence can be broken is when data are collected on the same variables over time. Let's say that we collect truancy data every semester for 12 years. In this situation it is likely that the errors for observation between adjacent semesters will be more highly correlated than for observations more separated in time. This is known as autocorrelation. When you have data that can be considered to be time-series you should use the dwstat command that performs a Durbin-Watson test for correlated residuals.

We don't have any time-series data, so we will use the elemapi2 dataset and pretend that snum indicates the time at which the data were collected. We will also need to use the tsset command to let Stata know which variable is the time variable.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2

tsset snum
 time variable: snum, 58 to 6072, but with gaps

regress api00 enroll
(output omitted)

dwstat
Number of gaps in sample: 311

Durbin-Watson d-statistic(2, 400) = .2892712

The Durbin-Watson statistic has a range from 0 to 4 with a midpoint of 2. The observed value in our example is very small, close to zero, which is not surprising since our data are not truly time-series. A simple visual check would be to plot the residuals versus the time variable.

. predict r, resid

scatter r snum
[image: image44.png]
2.8 Summary

In this chapter, we have used a number of tools in Stata for determining whether our data meets the regression assumptions. Below, we list the major commands we demonstrated organized according to the assumption the command was shown to test.

· Detecting Unusual and Influential Data

· predict -- used to create predicted values, residuals, and measures of influence.

· rvpplot --- graphs a residual-versus-predictor plot.

· rvfplot -- graphs residual-versus-fitted plot.

· lvr2plot -- graphs a leverage-versus-squared-residual plot.

· dfbeta -- calculates DFBETAs for all the independent variables in the linear model.

· avplot -- graphs an added-variable plot, a.k.a. partial regression plot.

· Tests for Normality of Residuals

· kdensity -- produces kernel density plot with normal distribution overlayed.

· pnorm -- graphs a standardized normal probability (P-P) plot.

· qnorm --- plots the quantiles of varname against the quantiles of a normal distribution.

· iqr -- resistant normality check and outlier identification.

· swilk -- performs the Shapiro-Wilk W test for normality.

· Tests for Heteroscedasticity

· rvfplot -- graphs residual-versus-fitted plot.

· hettest -- performs Cook and Weisberg test for heteroscedasticity.

· whitetst -- computes the White general test for Heteroscedasticity.

· Tests for Multicollinearity

· vif -- calculates the variance inflation factor for the independent variables in the linear model.

· collin -- calculates the variance inflation factor and other multicollinearity diagnostics

· Tests for Non-Linearity

· acprplot -- graphs an augmented component-plus-residual plot.

· cprplot --- graphs component-plus-residual plot, a.k.a. residual plot.

· Tests for Model Specification

· linktest -- performs a link test for model specification.

· ovtest -- performs regression specification error test (RESET) for omitted variables.

See the Stata Topics: Regression page for more information and resources on regression diagnostics in Stata.

2.9 Self Assessment

1. The following data set consists of measured weight, measured height, reported weight and reported height of some 200 people. You can get it from within Stata by typing use http://www.ats.ucla.edu/stat/stata/webbooks/reg/davis We tried to build a model to predict measured weight by reported weight, reported height and measured height. We did an lvr2plot after the regression and here is what we have. Explain what you see in the graph and try to use other STATA commands to identify the problematic observation(s). What do you think the problem is and what is your solution?

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/davis

. regress measwt measht reptwt reptht
 Source | SS df MS Number of obs = 181

---------+------------------------------ F(3, 177) = 1640.88

 Model | 40891.9594 3 13630.6531 Prob > F = 0.0000

Residual | 1470.3279 177 8.30693727 R-squared = 0.9653

---------+------------------------------ Adj R-squared = 0.9647

 Total | 42362.2873 180 235.346041 Root MSE = 2.8822

--

 measwt | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 measht | -.9607757 .0260189 -36.926 0.000 -1.012123 -.9094285

 reptwt | 1.01917 .0240778 42.328 0.000 .971654 1.066687

 reptht | .8184156 .0419658 19.502 0.000 .7355979 .9012334

 _cons | 24.8138 4.888302 5.076 0.000 15.16695 34.46065

--

lvr2plot
[image: image45.png]

2. Using the data from the last exercise, what measure would you use if you want to know how much change an observation would make on a coefficient for a predictor? For example, show how much change would it be for the coefficient of predictor reptht if we omit observation 12 from our regression analysis? What are the other measures that you would use to assess the influence of an observation on regression? What are the cut-off values for them?

3. The following data file is called bbwt.dta and it is from Weisberg's Applied Regression Analysis. You can obtain it from within Stata by typing use http://www.ats.ucla.edu/stat/stata/webbooks/reg/bbwt It consists of the body weights and brain weights of some 60 animals. We want to predict the brain weight by body weight, that is, a simple linear regression of brain weight against body weight. Show what you have to do to verify the linearity assumption. If you think that it violates the linearity assumption, show some possible remedies that you would consider.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/bbwt, clear

regress brainwt bodywt
 Source | SS df MS Number of obs = 62

---------+------------------------------ F(1, 60) = 411.12

 Model | 46067326.8 1 46067326.8 Prob > F = 0.0000

Residual | 6723217.18 60 112053.62 R-squared = 0.8726

---------+------------------------------ Adj R-squared = 0.8705

 Total | 52790543.9 61 865418.753 Root MSE = 334.74

--

 brainwt | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 bodywt | .9664599 .0476651 20.276 0.000 .8711155 1.061804

 _cons | 91.00865 43.55574 2.089 0.041 3.884201 178.1331

--

4. We did a regression analysis using data file elemapi in chapter 2. Continuing with the analysis we did, we did an avplot here. Explain what an avplot is and what type of information you would get from the plot. If variable full were put in the model, would it be a significant predictor?

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2, clear

regress api00 meals ell emer
 Source | SS df MS Number of obs = 400

---------+------------------------------ F(3, 396) = 673.00

 Model | 6749782.75 3 2249927.58 Prob > F = 0.0000

Residual | 1323889.25 396 3343.15467 R-squared = 0.8360

---------+------------------------------ Adj R-squared = 0.8348

 Total | 8073672.00 399 20234.7669 Root MSE = 57.82

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 meals | -3.159189 .1497371 -21.098 0.000 -3.453568 -2.864809

 ell | -.9098732 .1846442 -4.928 0.000 -1.272878 -.5468678

 emer | -1.573496 .293112 -5.368 0.000 -2.149746 -.9972456

 _cons | 886.7033 6.25976 141.651 0.000 874.3967 899.0098

--

. avplot full, mlabel(snum)
[image: image46.png]

5. The data set wage.dta is from a national sample of 6000 households with a male head earning less than $15,000 annually in 1966. You can get this data file by typing use http://www.ats.ucla.edu/stat/stata/webbooks/reg/wage from within Stata. The data were classified into 39 demographic groups for analysis. We tried to predict the average hours worked by average age of respondent and average yearly non-earned income.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/wage, clear
. regress HRS AGE NEIN
 Source | SS df MS Number of obs = 39

---------+------------------------------ F(2, 36) = 39.72

 Model | 107205.109 2 53602.5543 Prob > F = 0.0000

Residual | 48578.1222 36 1349.39228 R-squared = 0.6882

---------+------------------------------ Adj R-squared = 0.6708

 Total | 155783.231 38 4099.5587 Root MSE = 36.734

--

 HRS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 AGE | -8.281632 1.603736 -5.164 0.000 -11.53416 -5.029104

 NEIN | .4289202 .0484882 8.846 0.000 .3305816 .5272588

 _cons | 2321.03 57.55038 40.330 0.000 2204.312 2437.748

--

Both predictors are significant. Now if we add ASSET to our predictors list, neither NEIN nor ASSET is significant.

regress HRS AGE NEIN ASSET
 Source | SS df MS Number of obs = 39

---------+------------------------------ F(3, 35) = 25.83

 Model | 107317.64 3 35772.5467 Prob > F = 0.0000

Residual | 48465.5908 35 1384.73117 R-squared = 0.6889

---------+------------------------------ Adj R-squared = 0.6622

 Total | 155783.231 38 4099.5587 Root MSE = 37.212

--

 HRS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 AGE | -8.007181 1.88844 -4.240 0.000 -11.84092 -4.173443

 NEIN | .3338277 .337171 0.990 0.329 -.3506658 1.018321

 ASSET | .0044232 .015516 0.285 0.777 -.027076 .0359223

 _cons | 2314.054 63.22636 36.600 0.000 2185.698 2442.411

--

Can you explain why?

6. Continue to use the previous data set. This time we want to predict the average hourly wage by average percent of white respondents. Carry out the regression analysis and list the STATA commands that you can use to check for heteroscedasticity. Explain the result of your test(s).

Now we want to build another model to predict the average percent of white respondents by the average hours worked. Repeat the analysis you performed on the previous regression model. Explain your results.

7. We have a data set that consists of volume, diameter and height of some objects. Someone did a regression of volume on diameter and height.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/tree, clear

regress vol dia height
 Source | SS df MS Number of obs = 31

---------+------------------------------ F(2, 28) = 254.97

 Model | 7684.16254 2 3842.08127 Prob > F = 0.0000

Residual | 421.921306 28 15.0686181 R-squared = 0.9480

---------+------------------------------ Adj R-squared = 0.9442

 Total | 8106.08385 30 270.202795 Root MSE = 3.8818

--

 vol | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 dia | 4.708161 .2642646 17.816 0.000 4.166839 5.249482

 height | .3392513 .1301512 2.607 0.014 .0726487 .6058538

 _cons | -57.98766 8.638225 -6.713 0.000 -75.68226 -40.29306

--

Explain what tests you can use to detect model specification errors and if there is any, your solution to correct it.

Click here for our answers to these self assessment questions.

2.10 For more information
· Stata Manuals

· [R] regress

· [R] regression diagnostics

Regression with Stata
Chapter 4 - Beyond OLS

Chapter Outline
4.1 Robust Regression Methods
 4.1.1 Regression with Robust Standard Errors
 4.1.2 Using the Cluster Option
 4.1.3 Robust Regression
 4.1.4 Quantile Regression
 4.2 Constrained Linear Regression
 4.3 Regression with Censored or Truncated Data
 4.3.1 Regression with Censored Data
 4.3.2 Regression with Truncated Data
 4.4 Regression with Measurement Error
 4.5 Multiple Equation Regression Models
 4.5.1 Seemingly Unrelated Regression
 4.5.2 Multivariate Regression
 4.6 Summary
 4.7 Self assessment
 4.8 For more information
In this chapter we will go into various commands that go beyond OLS. This chapter is a bit different from the others in that it covers a number of different concepts, some of which may be new to you. These extensions, beyond OLS, have much of the look and feel of OLS but will provide you with additional tools to work with linear models.

The topics will include robust regression methods, constrained linear regression, regression with censored and truncated data, regression with measurement error, and multiple equation models.

4.1 Robust Regression Methods
It seems to be a rare dataset that meets all of the assumptions underlying multiple regression. We know that failure to meet assumptions can lead to biased estimates of coefficients and especially biased estimates of the standard errors. This fact explains a lot of the activity in the development of robust regression methods.

The idea behind robust regression methods is to make adjustments in the estimates that take into account some of the flaws in the data itself. We are going to look at three approaches to robust regression: 1) regression with robust standard errors including the cluster option, 2) robust regression using iteratively reweighted least squares, and 3) quantile regression, more specifically, median regression.

Before we look at these approaches, let's look at a standard OLS regression using the elementary school academic performance index (elemapi2.dta) dataset.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2
We will look at a model that predicts the api 2000 scores using the average class size in K through 3 (acs_k3), average class size 4 through 6 (acs_46), the percent of fully credentialed teachers (full), and the size of the school (enroll). First let's look at the descriptive statistics for these variables. Note the missing values for acs_k3 and acs_k6.

summarize api00 acs_k3 acs_46 full enroll
Variable | Obs Mean Std. Dev. Min Max

---------+---

 api00 | 400 647.6225 142.249 369 940

 acs_k3 | 398 19.1608 1.368693 14 25

 acs_46 | 397 29.68514 3.840784 20 50

 full | 400 84.55 14.94979 37 100

 enroll | 400 483.465 226.4484 130 1570

Below we see the regression predicting api00 from acs_k3, acs_46 full and enroll. We see that all of the variables are significant except for acs_k3.

regress api00 acs_k3 acs_46 full enroll
 Source | SS df MS Number of obs = 395

---------+------------------------------ F(4, 390) = 61.01

 Model | 3071909.06 4 767977.265 Prob > F = 0.0000

Residual | 4909500.73 390 12588.4634 R-squared = 0.3849

---------+------------------------------ Adj R-squared = 0.3786

 Total | 7981409.79 394 20257.3852 Root MSE = 112.20

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 acs_k3 | 6.954381 4.371097 1.591 0.112 -1.63948 15.54824

 acs_46 | 5.966015 1.531049 3.897 0.000 2.955873 8.976157

 full | 4.668221 .4142537 11.269 0.000 3.853771 5.482671

 enroll | -.1059909 .0269539 -3.932 0.000 -.1589841 -.0529977

 _cons | -5.200407 84.95492 -0.061 0.951 -172.2273 161.8265

--

We can use the test command to test both of the class size variables, and we find the overall test of these two variables is significant.

test acs_k3 acs_46
 (1) acs_k3 = 0.0

 (2) acs_46 = 0.0

 F(2, 390) = 11.08

 Prob > F = 0.0000

Here is the residual versus fitted plot for this regression. Notice that the pattern of the residuals is not exactly as we would hope. The spread of the residuals is somewhat wider toward the middle right of the graph than at the left, where the variability of the residuals is somewhat smaller, suggesting some heteroscedasticity.

rvfplot

[image: image47.png]
Below we show the avplots. Although the plots are small, you can see some points that are of concern. There is not a single extreme point (like we saw in chapter 2) but a handful of points that stick out. For example, in the top right graph you can see a handful of points that stick out from the rest. If this were just one or two points, we might look for mistakes or for outliers, but we would be more reluctant to consider such a large number of points as outliers.

avplots
[image: image48.png]
Here is the lvr2plot for this regression. We see 4 points that are somewhat high in both their leverage and their residuals.

lvr2plot

[image: image49.png]
None of these results are dramatic problems, but the rvfplot suggests that there might be some outliers and some possible heteroscedasticity; the avplots have some observations that look to have high leverage, and the lvr2plot shows some points in the upper right quadrant that could be influential. We might wish to use something other than OLS regression to estimate this model. In the next several sections we will look at some robust regression methods.

4.1.1 Regression with Robust Standard Errors
The Stata regress command includes a robust option for estimating the standard errors using the Huber-White sandwich estimators. Such robust standard errors can deal with a collection of minor concerns about failure to meet assumptions, such as minor problems about normality, heteroscedasticity, or some observations that exhibit large residuals, leverage or influence. For such minor problems, the robust option may effectively deal with these concerns.

With the robust option, the point estimates of the coefficients are exactly the same as in ordinary OLS, but the standard errors take into account issues concerning heterogeneity and lack of normality. Here is the same regression as above using the robust option. Note the changes in the standard errors and t-tests (but no change in the coefficients). In this particular example, using robust standard errors did not change any of the conclusions from the original OLS regression.

regress api00 acs_k3 acs_46 full enroll, robust
Regression with robust standard errors Number of obs = 395

 F(4, 390) = 84.67

 Prob > F = 0.0000

 R-squared = 0.3849

 Root MSE = 112.20

--

 | Robust

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 acs_k3 | 6.954381 4.620599 1.505 0.133 -2.130019 16.03878

 acs_46 | 5.966015 1.573214 3.792 0.000 2.872973 9.059057

 full | 4.668221 .4146813 11.257 0.000 3.852931 5.483512

 enroll | -.1059909 .0280154 -3.783 0.000 -.1610711 -.0509108

 _cons | -5.200407 86.66308 -0.060 0.952 -175.5857 165.1849

--

4.1.2 Using the Cluster Option
As described in Chapter 2, OLS regression assumes that the residuals are independent. The elemapi2 dataset contains data on 400 schools that come from 37 school districts. It is very possible that the scores within each school district may not be independent, and this could lead to residuals that are not independent within districts. We can use the cluster option to indicate that the observations are clustered into districts (based on dnum) and that the observations may be correlated within districts, but would be independent between districts.

By the way, if we did not know the number of districts, we could quickly find out how many districts there are as shown below, by quietly tabulating dnum and then displaying the macro r(r) which gives the numbers of rows in the table, which is the number of school districts in our data.

quietly tabulate dnum
display r(r)
37

Now, we can run regress with the cluster option. We do not need to include the robust option since robust is implied with cluster.
Note that the standard errors have changed substantially, much more so, than the change caused by the robust option by itself.

regress api00 acs_k3 acs_46 full enroll, cluster(dnum)
Regression with robust standard errors Number of obs = 395

 F(4, 36) = 31.18

 Prob > F = 0.0000

 R-squared = 0.3849

Number of clusters (dnum) = 37 Root MSE = 112.20

--

 | Robust

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 acs_k3 | 6.954381 6.901117 1.008 0.320 -7.041734 20.9505

 acs_46 | 5.966015 2.531075 2.357 0.024 .8327565 11.09927

 full | 4.668221 .7034641 6.636 0.000 3.24153 6.094913

 enroll | -.1059909 .0429478 -2.468 0.018 -.1930931 -.0188888

 _cons | -5.200407 121.7856 -0.043 0.966 -252.193 241.7922

--

As with the robust option, the estimate of the coefficients are the same as the OLS estimates, but the standard errors take into account that the observations within districts are non-independent. Even though the standard errors are larger in this analysis, the three variables that were significant in the OLS analysis are significant in this analysis as well. These standard errors are computed based on aggregate scores for the 37 districts, since these district level scores should be independent. If you have a very small number of clusters compared to your overall sample size it is possible that the standard errors could be quite larger than the OLS results. For example, if there were only 3 districts, the standard errors would be computed on the aggregate scores for just 3 districts.

4.1.3 Robust Regression
The Stata rreg command performs a robust regression using iteratively reweighted least squares, i.e., rreg assigns a weight to each observation with higher weights given to better behaved observations. In fact, extremely deviant cases, those with Cook's D greater than 1, can have their weights set to missing so that they are not included in the analysis at all.

We will use rreg with the generate option so that we can inspect the weights used to weight the observations. Note that in this analysis both the coefficients and the standard errors differ from the original OLS regression. Below we show the same analysis using robust regression using the rreg command.

rreg api00 acs_k3 acs_46 full enroll, gen(wt)
Robust regression estimates Number of obs = 395

 F(4, 390) = 56.51

 Prob > F = 0.0000

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 acs_k3 | 6.110881 4.658131 1.312 0.190 -3.047308 15.26907

 acs_46 | 6.254708 1.631587 3.834 0.000 3.046901 9.462516

 full | 4.796072 .4414563 10.864 0.000 3.92814 5.664004

 enroll | -.1092586 .0287239 -3.804 0.000 -.1657316 -.0527855

 _cons | -6.788183 90.5336 -0.075 0.940 -184.7832 171.2068

--

If you compare the robust regression results (directly above) with the OLS results previously presented, you can see that the coefficients and standard errors are quite similar, and the t values and p values are also quite similar. Despite the minor problems that we found in the data when we performed the OLS analysis, the robust regression analysis yielded quite similar results suggesting that indeed these were minor problems. Had the results been substantially different, we would have wanted to further investigate the reasons why the OLS and robust regression results were different, and among the two results the robust regression results would probably be the more trustworthy.

Let's calculate and look at the predicted (fitted) values (p), the residuals (r), and the leverage (hat) values (h). Note that we are including if e(sample) in the commands because rreg can generate weights of missing and you wouldn't want to have predicted values and residuals for those observations.

predict p if e(sample)
(option xb assumed; fitted values)

(5 missing values generated)

predict r if e(sample), resid
(5 missing values generated)

predict h if e(sample), hat
(5 missing values generated)

Now, let's check on the various predicted values and the weighting. First, we will sort by wt then we will look at the first 15 observations. Notice that the smallest weights are near one-half but quickly get into the .7 range.

sort wt

list snum api00 p r h wt in 1/15
 snum api00 p r h wt

 1. 637 447 733.1567 -286.1568 .0037645 .55612093

 2. 5387 892 611.5344 280.4655 .0023925 .57126927

 3. 2267 897 621.4881 275.5119 .010207 .58433963

 4. 65 903 631.2718 271.7282 .0105486 .59425026

 5. 3759 585 842.4838 -257.4838 .0414728 .63063771

 6. 5926 469 715.2266 -246.2266 .0058346 .65892631

 7. 1978 894 650.7816 243.2184 .0058116 .6665881

 8. 3696 483 721.3105 -238.3105 .0052619 .67834344

 9. 5222 940 707.648 232.352 .0041016 .69303069

 10. 690 424 654.5795 -230.5795 .0094319 .69701005

 11. 3785 459 687.3311 -228.3311 .0081474 .70245717

 12. 2910 831 604.4401 226.56 .0536809 .70650365

 13. 699 437 660.2588 -223.2588 .0059152 .71449402

 14. 3070 479 698.1256 -219.1256 .0043322 .72399766

 15. 1812 917 698.9828 218.0172 .0099871 .72670695

Now, let's look at the last 10 observations. The weights for observations 391 to 395 are all very close to one. The values for observations 396 to the end are missing due to the missing predictors. Note that the observations above that have the lowest weights are also those with the largest residuals (residuals over 200) and the observations below with the highest weights have very low residuals (all less than 3).

list snum api00 p r h wt in -10/l
 snum api00 p r h wt

391. 3024 727 729.0243 -2.024302 .0104834 .99997367

392. 3535 705 703.846 1.154008 .0048329 .99999207

393. 1885 605 605.427 -.4269809 .0144377 .99999843

394. 1678 497 496.8011 .1989256 .0243301 .99999956

395. 4486 706 705.8076 .192455 .0142448 .99999986

396. 4488 521

397. 3072 763

398. 3055 590

399. 116 513

400. 4534 445

After using rreg, it is possible to generate predicted values, residuals and leverage (hat), but most of the regression diagnostic commands are not available after rreg. We will have to create some of them for ourselves. Here, of course, is the graph of residuals versus fitted (predicted) with a line at zero. This plot looks much like the OLS plot, except that in the OLS all of the observations would be weighted equally, but as we saw above the observations with the greatest residuals are weighted less and hence have less influence on the results.

scatter r p, yline(0)
[image: image50.png]
To get an lvr2plot we are going to have to go through several steps in order to get the normalized squared residuals and the means of both the residuals and the leverage (hat) values.

First, we generate the residual squared (r2) and then divide it by the sum of the squared residuals. We then compute the mean of this value and save it as a local macro called rm (which we will use for creating the leverage vs. residual plot).

generate r2=r^2
(5 missing values generated)

sum r2
Variable | Obs Mean Std. Dev. Min Max

---------+---

 r2 | 395 12436.05 14677.98 .0370389 81885.7

replace r2 = r2/r(sum)
(395 real changes made)

summarize r2
Variable | Obs Mean Std. Dev. Min Max

---------+---

 r2 | 395 .0025316 .002988 7.54e-09 .0166697

local rm = r(mean)
Next we compute the mean of the leverage and save it as a local macro called hm.

summarize h
Variable | Obs Mean Std. Dev. Min Max

---------+---

 h | 395 .0126422 .0108228 .0023925 .0664077

local hm = r(mean)
Now, we can plot the leverage against the residual squared as shown below. Comparing the plot below with the plot from the OLS regression, this plot is much better behaved. There are no longer points in the upper right quadrant of the graph.

scatter h r2, yline(`hm') xline(`rm')
[image: image51.png]
Let's close out this analysis by deleting our temporary variables.

drop wt p r h r2
4.1.4 Quantile Regression
Quantile regression, in general, and median regression, in particular, might be considered as an alternative to rreg. The Stata command qreg does quantile regression. qreg without any options will actually do a median regression in which the coefficients will be estimated by minimizing the absolute deviations from the median. Of course, as an estimate of central tendency, the median is a resistant measure that is not as greatly affected by outliers as is the mean. It is not clear that median regression is a resistant estimation procedure, in fact, there is some evidence that it can be affected by high leverage values.

Here is what the quantile regression looks like using Stata's qreg command. The coefficient and standard error for acs_k3 are considerably different when using qreg as compared to OLS using the regress command (the coefficients are 1.2 vs 6.9 and the standard errors are 6.4 vs 4.3). The coefficients and standard errors for the other variables are also different, but not as dramatically different. Nevertheless, the qreg results indicate that, like the OLS results, all of the variables except acs_k3 are significant.

qreg api00 acs_k3 acs_46 full enroll
Median regression Number of obs = 395

 Raw sum of deviations 48534 (about 643)

 Min sum of deviations 36268.11 Pseudo R2 = 0.2527

--

 api00 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 acs_k3 | 1.269065 6.470588 0.196 0.845 -11.45253 13.99066

 acs_46 | 7.22408 2.228949 3.241 0.001 2.841821 11.60634

 full | 5.323841 .6157333 8.646 0.000 4.113269 6.534413

 enroll | -.1245734 .0397576 -3.133 0.002 -.2027395 -.0464073

 _cons | 17.15049 125.4396 0.137 0.891 -229.4719 263.7729

--

The qreg command has even fewer diagnostic options than rreg does. About the only values we can obtain are the predicted values and the residuals.

predict p if e(sample)
(option xb assumed; fitted values)

(5 missing values generated)

predict r if e(sample), r
(5 missing values generated)

scatter r p, yline(0)

[image: image52.png]
Stata has three additional commands that can do quantile regression.

iqreg estimates interquantile regressions, regressions of the difference in quantiles. The estimated variance-covariance matrix of the estimators is obtained via bootstrapping.

sqreg estimates simultaneous-quantile regression. It produces the same coefficients as qreg for each quantile. sqreg obtains a bootstrapped variance-covariance matrix of the estimators that includes between-quantiles blocks. Thus, one can test and construct confidence intervals comparing coefficients describing different quantiles.

bsqreg is the same as sqreg with one quantile. sqreg is, therefore, faster than bsqreg.

4.2 Constrained Linear Regression
Let's begin this section by looking at a regression model using the hsb2 dataset. The hsb2 file is a sample of 200 cases from the Highschool and Beyond Study (Rock, Hilton, Pollack, Ekstrom & Goertz, 1985). It includes the following variables: id, female, race, ses, schtyp, program, read, write, math, science and socst. The variables read, write, math, science and socst are the results of standardized tests on reading, writing, math, science and social studies (respectively), and the variable female is coded 1 if female, 0 if male.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/hsb2
Let's start by doing an OLS regression where we predict socst score from read, write, math, science and female (gender)

regress socst read write math science female
 Source | SS df MS Number of obs = 200

---------+------------------------------ F(5, 194) = 35.44

 Model | 10949.2575 5 2189.8515 Prob > F = 0.0000

Residual | 11986.9375 194 61.7883375 R-squared = 0.4774

---------+------------------------------ Adj R-squared = 0.4639

 Total | 22936.195 199 115.257261 Root MSE = 7.8606

--

 socst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 read | .3784046 .0806267 4.693 0.000 .2193872 .537422

 write | .3858743 .0889283 4.339 0.000 .2104839 .5612646

 math | .1303258 .0893767 1.458 0.146 -.045949 .3066006

 science | -.0333925 .0818741 -0.408 0.684 -.1948702 .1280852

 female | -.3532648 1.245372 -0.284 0.777 -2.809471 2.102941

 _cons | 7.339342 3.650243 2.011 0.046 .1400864 14.5386

--

Notice that the coefficients for read and write are very similar, which makes sense since they are both measures of language ability. Also, the coefficients for math and science are similar (in that they are both not significantly different from 0). Suppose that we have a theory that suggests that read and write should have equal coefficients, and that math and science should have equal coefficients as well. We can test the equality of the coefficients using the test command.

test read=write

 (1) read - write = 0.0

 F(1, 194) = 0.00

 Prob > F = 0.9558

We can also do this with the testparm command, which is especially useful if you were testing whether 3 or more coefficients were equal.

testparm read write, equal
 (1) - read + write = 0.0

 F(1, 194) = 0.00

 Prob > F = 0.9558

Both of these results indicate that there is no significant difference in the coefficients for the reading and writing scores. Since it appears that the coefficients for math and science are also equal, let's test the equality of those as well (using the testparm command).

testparm math science, equal
 (1) - math + science = 0.0

 F(1, 194) = 1.45

 Prob > F = 0.2299

Let's now perform both of these tests together, simultaneously testing that the coefficient for read equals write and math equals science. We do this using two test commands, the second using the accum option to accumulate the first test with the second test to test both of these hypotheses together.

test read=write
 (1) read - write = 0.0

 F(1, 194) = 0.00

 Prob > F = 0.9558

test math=science, accum
 (1) read - write = 0.0

 (2) math - science = 0.0

 F(2, 194) = 0.73

 Prob > F = 0.4852

Note this second test has 2 df, since it is testing both of the hypotheses listed, and this test is not significant, suggesting these pairs of coefficients are not significantly different from each other. We can estimate regression models where we constrain coefficients to be equal to each other. For example, let's begin on a limited scale and constrain read to equal write. First, we will define a constraint and then we will run the cnsreg command.

constraint define 1 read = write

. cnsreg socst read write math science female, constraint(1)
Constrained linear regression Number of obs = 200

 F(4, 195) = 44.53

 Prob > F = 0.0000

 Root MSE = 7.8404

 (1) read - write = 0.0

--

 socst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 read | .3818488 .0513899 7.430 0.000 .2804975 .4832002

 write | .3818488 .0513899 7.430 0.000 .2804975 .4832002

 math | .1303036 .0891471 1.462 0.145 -.0455126 .3061197

 science | -.0332762 .0816379 -0.408 0.684 -.1942827 .1277303

 female | -.3296237 1.167364 -0.282 0.778 -2.631904 1.972657

 _cons | 7.354148 3.631175 2.025 0.044 .1927294 14.51557

--

Notice that the coefficients for read and write are identical, along with their standard errors, t-test, etc. Also note that the degrees of freedom for the F test is four, not five, as in the OLS model. This is because only one coefficient is estimated for read and write, estimated like a single variable equal to the sum of their values. Notice also that the Root MSE is slightly higher for the constrained model, but only slightly higher. This is because we have forced the model to estimate the coefficients for read and write that are not as good at minimizing the Sum of Squares Error (the coefficients that would minimize the SSE would be the coefficients from the unconstrained model).

Next, we will define a second constraint, setting math equal to science. We will also abbreviate the constraints option to c.

constraint define 2 math = science

. cnsreg socst read write math science female, c(1 2)
Constrained linear regression Number of obs = 200

 F(3, 196) = 58.75

 Prob > F = 0.0000

 Root MSE = 7.8496

 (1) read - write = 0.0

 (2) math - science = 0.0

--

 socst | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 read | .3860376 .0513322 7.520 0.000 .2848033 .4872719

 write | .3860376 .0513322 7.520 0.000 .2848033 .4872719

 math | .0428053 .0519238 0.824 0.411 -.0595958 .1452064

 science | .0428053 .0519238 0.824 0.411 -.0595958 .1452064

 female | -.200875 1.163831 -0.173 0.863 -2.496114 2.094364

 _cons | 7.505658 3.633225 2.066 0.040 .3404249 14.67089

--

Now the coefficients for read = write and math = science and the degrees of freedom for the model has dropped to three. Again, the Root MSE is slightly larger than in the prior model, but we should emphasize only very slightly larger. If indeed the population coefficients for read = write and math = science, then these combined (constrained) estimates may be more stable and generalize better to other samples. So although these estimates may lead to slightly higher standard error of prediction in this sample, they may generalize better to the population from which they came.

4.3 Regression with Censored or Truncated Data
Analyzing data that contain censored values or are truncated is common in many research disciplines. According to Hosmer and Lemeshow (1999), a censored value is one whose value is incomplete due to random factors for each subject. A truncated observation, on the other hand, is one which is incomplete due to a selection process in the design of the study.

We will begin by looking at analyzing data with censored values.

4.3.1 Regression with Censored Data
In this example we have a variable called acadindx which is a weighted combination of standardized test scores and academic grades. The maximum possible score on acadindx is 200 but it is clear that the 16 students who scored 200 are not exactly equal in their academic abilities. In other words, there is variability in academic ability that is not being accounted for when students score 200 on acadindx. The variable acadindx is said to be censored, in particular, it is right censored.

Let's look at the example. We will begin by looking at a description of the data, some descriptive statistics, and correlations among the variables.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/acadindx
(max possible on acadindx is 200)

describe
Contains data from acadindx.dta

 obs: 200 max possible on acadindx is 200

 vars: 5 19 Jan 2001 20:14

 size: 4,800 (99.7% of memory free)

 1. id float %9.0g

 2. female float %9.0g fl

 3. reading float %9.0g

 4. writing float %9.0g

 5. acadindx float %9.0g academic index

summarize
Variable | Obs Mean Std. Dev. Min Max

---------+---

 id | 200 100.5 57.87918 1 200

 female | 200 .545 .4992205 0 1

 reading | 200 52.23 10.25294 28 76

 writing | 200 52.775 9.478586 31 67

acadindx | 200 172.185 16.8174 138 200

count if acadindx==200
 16

corr acadindx female reading writing
(obs=200)

 | acadindx female reading writing

---------+------------------------------------

acadindx | 1.0000

 female | -0.0821 1.0000

 reading | 0.7131 -0.0531 1.0000

 writing | 0.6626 0.2565 0.5968 1.0000

Now, let's run a standard OLS regression on the data and generate predicted scores in p1.

regress acadindx female reading writing
 Source | SS df MS Number of obs = 200

---------+------------------------------ F(3, 196) = 107.40

 Model | 34994.282 3 11664.7607 Prob > F = 0.0000

Residual | 21287.873 196 108.611597 R-squared = 0.6218

---------+------------------------------ Adj R-squared = 0.6160

 Total | 56282.155 199 282.824899 Root MSE = 10.422

--

acadindx | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 female | -5.832498 1.58821 -3.672 0.000 -8.964671 -2.700324

 reading | .7184174 .0931493 7.713 0.000 .5347138 .902121

 writing | .7905706 .1040996 7.594 0.000 .5852715 .9958696

 _cons | 96.11841 4.489562 21.409 0.000 87.26436 104.9725

--

predict p1
(option xb assumed; fitted values)

The tobit command is one of the commands that can be used for regression with censored data. The syntax of the command is similar to regress with the addition of the ul option to indicate that the right censored value is 200. We will follow the tobit command by predicting p2 containing the tobit predicted values.

tobit acadindx female reading writing, ul(200)
Tobit estimates Number of obs = 200

 LR chi2(3) = 190.39

 Prob > chi2 = 0.0000

Log likelihood = -718.06362 Pseudo R2 = 0.1171

--

acadindx | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 female | -6.347316 1.692441 -3.750 0.000 -9.684943 -3.009688

 reading | .7776857 .0996928 7.801 0.000 .5810837 .9742877

 writing | .8111221 .110211 7.360 0.000 .5937773 1.028467

 _cons | 92.73782 4.803441 19.307 0.000 83.26506 102.2106

---------+--

 _se | 10.98973 .5817477 (Ancillary parameter)

--

Obs. summary: 184 uncensored observations

 16 right-censored observations at acadindx>=200

predict p2
(option xb assumed; fitted values)

Summarizing the p1 and p2 scores shows that the tobit predicted values have a larger standard deviation and a greater range of values.

summarize acadindx p1 p2
Variable | Obs Mean Std. Dev. Min Max

---------+---

acadindx | 200 172.185 16.8174 138 200

 p1 | 200 172.185 13.26087 142.3821 201.5311

 p2 | 200 172.704 14.00292 141.2211 203.8541

When we look at a listing of p1 and p2 for all students who scored the maximum of 200 on acadindx, we see that in every case the tobit predicted value is greater than the OLS predicted value. These predictions represent an estimate of what the variability would be if the values of acadindx could exceed 200.

list p1 p2 if acadindx==200
 p1 p2

 32. 179.175 179.62

 57. 192.6806 194.3291

 68. 201.5311 203.8541

 80. 191.8309 193.577

 82. 188.1537 189.5627

 88. 186.5725 187.9405

 95. 195.9971 198.1762

100. 186.9333 188.1076

132. 197.5782 199.7984

136. 189.4592 191.1436

143. 191.1846 192.8327

157. 191.6145 193.4767

161. 180.2511 181.0082

169. 182.275 183.3667

174. 191.6145 193.4767

200. 187.6616 189.4211

Here is the syntax diagram for tobit:

tobit depvar [indepvars] [weight] [if exp] [in range], ll[(#)] ul[(#)]

 [level(#) offset(varname) maximize_options]
You can declare both lower and upper censored values. The censored values are fixed in that the same lower and upper values apply to all observations.

There are two other commands in Stata that allow you more flexibility in doing regression with censored data.

cnreg estimates a model in which the censored values may vary from observation to observation.

intreg estimates a model where the response variable for each observation is either point data, interval data, left-censored data, or right-censored data.

4.3.2 Regression with Truncated Data
Truncated data occurs when some observations are not included in the analysis because of the value of the variable. We will illustrate analysis with truncation using the dataset, acadindx, that was used in the previous section. If acadindx is no longer loaded in memory you can get it with the following use command.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/acadindx
(max possible on acadindx is 200)

Let's imagine that in order to get into a special honors program, students need to score at least 160 on acadindx. So we will drop all observations in which the value of acadindx is less than 160.

drop if acadindx <= 160
(56 observations deleted)

Now, let's estimate the same model that we used in the section on censored data, only this time we will pretend that a 200 for acadindx is not censored.

regress acadindx female reading writing
 Source | SS df MS Number of obs = 144

-------------+------------------------------ F(3, 140) = 33.01

 Model | 8074.79638 3 2691.59879 Prob > F = 0.0000

 Residual | 11416.3633 140 81.5454524 R-squared = 0.4143

-------------+------------------------------ Adj R-squared = 0.4017

 Total | 19491.1597 143 136.301816 Root MSE = 9.0303

--

 acadindx | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 female | -5.238495 1.615632 -3.24 0.001 -8.432687 -2.044303

 reading | .4411066 .0963504 4.58 0.000 .2506166 .6315965

 writing | .5873287 .1150828 5.10 0.000 .3598037 .8148537

 _cons | 125.6355 5.891559 21.32 0.000 113.9875 137.2834

--

It is clear that the estimates of the coefficients are distorted due to the fact that 56 observations are no longer in the dataset. This amounts to restriction of range on both the response variable and the predictor variables. For example, the coefficient for writing dropped from .79 to .59. What this means is that if our goal is to find the relation between adadindx and the predictor variables in the population, then the truncation of acadindx in our sample is going to lead to biased estimates. A better approach to analyzing these data is to use truncated regression. In Stata this can be accomplished using the truncreg command where the ll option is used to indicate the lower limit of acadindx scores used in the truncation.

truncreg acadindx female reading writing, ll(160)
(note: 0 obs. truncated)

Truncated regression

Limit: lower = 160 Number of obs = 144

 upper = +inf Wald chi2(3) = 77.87

Log likelihood = -510.00768 Prob > chi2 = 0.0000

--

 acadindx | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--

eq1 |

 female | -6.099602 1.925245 -3.17 0.002 -9.873012 -2.326191

 reading | .5181789 .1168288 4.44 0.000 .2891986 .7471592

 writing | .7661636 .15262 5.02 0.000 .4670339 1.065293

 _cons | 110.2892 8.673849 12.72 0.000 93.28877 127.2896

-------------+--

sigma |

 _cons | 9.803572 .721646 13.59 0.000 8.389172 11.21797

--

The coefficients from the truncreg command are closer to the OLS results, for example the coefficient for writing is .77 which is closer to the OLS results of .79. However, the results are still somewhat different on the other variables, for example the coefficient for reading is .52 in the truncreg as compared to .72 in the original OLS with the unrestricted data, and better than the OLS estimate of .47 with the restricted data. While truncreg may improve the estimates on a restricted data file as compared to OLS, it is certainly no substitute for analyzing the complete unrestricted data file.

4.4 Regression with Measurement Error

As you will most likely recall, one of the assumptions of regression is that the predictor variables are measured without error. The problem is that measurement error in predictor variables leads to under estimation of the regression coefficients. Stata's eivreg command takes measurement error into account when estimating the coefficients for the model.

Let's look at a regression using the hsb2 dataset.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/hsb2

regress write read female
 Source | SS df MS Number of obs = 200

---------+------------------------------ F(2, 197) = 77.21

 Model | 7856.32118 2 3928.16059 Prob > F = 0.0000

Residual | 10022.5538 197 50.8759077 R-squared = 0.4394

---------+------------------------------ Adj R-squared = 0.4337

 Total | 17878.875 199 89.843593 Root MSE = 7.1327

--

 write | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 read | .5658869 .0493849 11.459 0.000 .468496 .6632778

 female | 5.486894 1.014261 5.410 0.000 3.48669 7.487098

 _cons | 20.22837 2.713756 7.454 0.000 14.87663 25.58011

--

The predictor read is a standardized test score. Every test has measurement error. We don't know the exact reliability of read, but using .9 for the reliability would probably not be far off. We will now estimate the same regression model with the Stata eivreg command, which stands for errors-in-variables regression.

eivreg write read female, r(read .9)
 assumed errors-in-variables regression

variable reliability

------------------------ Number of obs = 200

 read 0.9000 F(2, 197) = 83.41

 * 1.0000 Prob > F = 0.0000

 R-squared = 0.4811

 Root MSE = 6.86268

--

 write | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 read | .6289607 .0528111 11.910 0.000 .524813 .7331085

 female | 5.555659 .9761838 5.691 0.000 3.630548 7.48077

 _cons | 16.89655 2.880972 5.865 0.000 11.21504 22.57805

Note that the F-ratio and the R2 increased along with the regression coefficient for read. Additionally, there is an increase in the standard error for read.

Now, let's try a model with read, math and socst as predictors. First, we will run a standard OLS regression.

regress write read math socst female
 Source | SS df MS Number of obs = 200

---------+------------------------------ F(4, 195) = 64.37

 Model | 10173.7036 4 2543.42591 Prob > F = 0.0000

Residual | 7705.17137 195 39.5136993 R-squared = 0.5690

---------+------------------------------ Adj R-squared = 0.5602

 Total | 17878.875 199 89.843593 Root MSE = 6.286

--

 write | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 read | .2065341 .0640006 3.227 0.001 .0803118 .3327563

 math | .3322639 .0651838 5.097 0.000 .2037082 .4608195

 socst | .2413236 .0547259 4.410 0.000 .133393 .3492542

 female | 5.006263 .8993625 5.566 0.000 3.232537 6.77999

 _cons | 9.120717 2.808367 3.248 0.001 3.582045 14.65939

--

Now, let's try to account for the measurement error by using the following reliabilities: read - .9, math - .9, socst - .8.

eivreg write read math socst female, r(read .9 math .9 socst .8)
 assumed errors-in-variables regression

variable reliability

------------------------ Number of obs = 200

 read 0.9000 F(4, 195) = 70.17

 math 0.9000 Prob > F = 0.0000

 socst 0.8000 R-squared = 0.6047

 * 1.0000 Root MSE = 6.02062

--

 write | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 read | .1506668 .0936571 1.609 0.109 -.0340441 .3353776

 math | .350551 .0850704 4.121 0.000 .1827747 .5183273

 socst | .3327103 .0876869 3.794 0.000 .159774 .5056467

 female | 4.852501 .8730646 5.558 0.000 3.13064 6.574363

 _cons | 6.37062 2.868021 2.221 0.027 .7142973 12.02694

--

Note that the overall F and R2 went up, but that the coefficient for read is no longer statistically significant.

4.5 Multiple Equation Regression Models

If a dataset has enough variables we may want to estimate more than one regression model. For example, we may want to predict y1 from x1 and also predict y2 from x2. Even though there are no variables in common these two models are not independent of one another because the data come from the same subjects. This is an example of one type of multiple equation regression known as seemingly unrelated regression. We can estimate the coefficients and obtain standard errors taking into account the correlated errors in the two models. An important feature of multiple equation models is that we can test predictors across equations.

Another example of multiple equation regression is if we wished to predict y1, y2 and y3 from x1 and x2. This is a three equation system, known as multivariate regression, with the same predictor variables for each model. Again, we have the capability of testing coefficients across the different equations.

Multiple equation models are a powerful extension to our data analysis tool kit.

4.5.1 Seemingly Unrelated Regression
Let's continue using the hsb2 data file to illustrate the use of seemingly unrelated regression. You can load it into memory again if it has been cleared out.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/hsb2
(highschool and beyond (200 cases))

This time let's look at two regression models.

 science = math female

 write = read female

It is the case that the errors (residuals) from these two models would be correlated. This would be true even if the predictor female were not found in both models. The errors would be correlated because all of the values of the variables are collected on the same set of observations. This is a situation tailor made for seemingly unrelated regression using the sureg command. Here is our first model using OLS.

regress science math female
<some output omitted>

--

 science | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 math | .6631901 .0578724 11.460 0.000 .549061 .7773191

 female | -2.168396 1.086043 -1.997 0.047 -4.310159 -.026633

 _cons | 18.11813 3.167133 5.721 0.000 11.8723 24.36397

--

And here is our second model using OLS.

regress write read female
<some output omitted>

--

 write | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 read | .5658869 .0493849 11.459 0.000 .468496 .6632778

 female | 5.486894 1.014261 5.410 0.000 3.48669 7.487098

 _cons | 20.22837 2.713756 7.454 0.000 14.87663 25.58011

--

With the sureg command we can estimate both models simultaneously while accounting for the correlated errors at the same time, leading to efficient estimates of the coefficients and standard errors. By including the corr option with sureg we can also obtain an estimate of the correlation between the errors of the two models. Note that both the estimates of the coefficients and their standard errors are different from the OLS model estimates shown above. The bottom of the output provides a Breusch-Pagan test of whether the residuals from the two equations are independent (in this case, we would say the residuals were not independent, p=0.0407).

sureg (science math female) (write read female), corr
Seemingly unrelated regression

--

Equation Obs Parms RMSE "R-sq" Chi2 P

--

science 200 2 7.595793 0.4085 125.4142 0.0000

write 200 2 7.085844 0.4383 144.2683 0.0000

--

 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

science |

 math | .6251409 .0570948 10.949 0.000 .5132373 .7370446

 female | -2.189344 1.077862 -2.031 0.042 -4.301914 -.0767744

 _cons | 20.13265 3.125775 6.441 0.000 14.00624 26.25905

---------+--

write |

 read | .5354838 .0487212 10.991 0.000 .4399919 .6309757

 female | 5.453748 1.006609 5.418 0.000 3.48083 7.426665

 _cons | 21.83439 2.67851 8.152 0.000 16.5846 27.08417

--

Correlation matrix of residuals:

 science write

science 1.0000

 write 0.1447 1.0000

Breusch-Pagan test of independence: chi2(1) = 4.188, Pr = 0.0407

Now that we have estimated our models let's test the predictor variables. The test for female combines information from both models. The tests for math and read are actually equivalent to the z-tests above except that the results are displayed as chi-square tests.

test female
 (1) [science]female = 0.0

 (2) [write]female = 0.0

 chi2(2) = 37.45

 Prob > chi2 = 0.0000

test math
 (1) [science]math = 0.0

 chi2(1) = 119.88

 Prob > chi2 = 0.0000

test read
 (1) [write]read = 0.0

 chi2(1) = 120.80

 Prob > chi2 = 0.0000

Now, let's estimate 3 models where we use the same predictors in each model as shown below.

 read = female prog1 prog3

 write = female prog1 prog3

 math = female prog1 prog3
If you no longer have the dummy variables for prog, you can recreate them using the tabulate command.

tabulate prog, gen(prog)
Let's first estimate these three models using 3 OLS regressions.

regress read female prog1 prog3
<some output omitted>

--

 read | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 female | -1.208582 1.327672 -0.910 0.364 -3.826939 1.409774

 prog1 | -6.42937 1.665893 -3.859 0.000 -9.714746 -3.143993

 prog3 | -9.976868 1.606428 -6.211 0.000 -13.14497 -6.808765

 _cons | 56.8295 1.170562 48.549 0.000 54.52099 59.13802

--

regress write female prog1 prog3
<some output omitted>

--

 write | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 female | 4.771211 1.181876 4.037 0.000 2.440385 7.102037

 prog1 | -4.832929 1.482956 -3.259 0.001 -7.757528 -1.908331

 prog3 | -9.438071 1.430021 -6.600 0.000 -12.25827 -6.617868

 _cons | 53.62162 1.042019 51.459 0.000 51.56661 55.67662

--

regress math female prog1 prog3
<some output omitted>

--

 math | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 female | -.6737673 1.176059 -0.573 0.567 -2.993122 1.645587

 prog1 | -6.723945 1.475657 -4.557 0.000 -9.634149 -3.81374

 prog3 | -10.32168 1.422983 -7.254 0.000 -13.128 -7.515352

 _cons | 57.10551 1.03689 55.074 0.000 55.06062 59.1504

--

These regressions provide fine estimates of the coefficients and standard errors but these results assume the residuals of each analysis are completely independent of the others. Also, if we wish to test female, we would have to do it three times and would not be able to combine the information from all three tests into a single overall test.

Now let's use sureg to estimate the same models. Since all 3 models have the same predictors, we can use the syntax as shown below which says that read, write and math will each be predicted by female, prog1 and prog3. Note that the coefficients are identical in the OLS results above and the sureg results below, however the standard errors are different, only slightly, due to the correlation among the residuals in the multiple equations.

sureg (read write math = female prog1 prog3), corr
Seemingly unrelated regression

--

Equation Obs Parms RMSE "R-sq" Chi2 P

--

read 200 3 9.254765 0.1811 44.24114 0.0000

write 200 3 8.238468 0.2408 63.41908 0.0000

math 200 3 8.197921 0.2304 59.88479 0.0000

--

 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

read |

 female | -1.208582 1.314328 -0.920 0.358 -3.784618 1.367454

 prog1 | -6.42937 1.64915 -3.899 0.000 -9.661645 -3.197095

 prog3 | -9.976868 1.590283 -6.274 0.000 -13.09377 -6.859971

 _cons | 56.8295 1.158797 49.042 0.000 54.5583 59.1007

---------+--

write |

 female | 4.771211 1.169997 4.078 0.000 2.478058 7.064363

 prog1 | -4.832929 1.468051 -3.292 0.001 -7.710257 -1.955602

 prog3 | -9.438071 1.415648 -6.667 0.000 -12.21269 -6.663451

 _cons | 53.62162 1.031546 51.982 0.000 51.59982 55.64341

---------+--

math |

 female | -.6737673 1.164239 -0.579 0.563 -2.955634 1.608099

 prog1 | -6.723945 1.460826 -4.603 0.000 -9.587111 -3.860778

 prog3 | -10.32168 1.408681 -7.327 0.000 -13.08264 -7.560711

 _cons | 57.10551 1.026469 55.633 0.000 55.09367 59.11735

--

Correlation matrix of residuals:

 read write math

 read 1.0000

write 0.5519 1.0000

 math 0.5774 0.5577 1.0000

Breusch-Pagan test of independence: chi2(3) = 189.811, Pr = 0.0000

In addition to getting more appropriate standard errors, sureg allows us to test the effects of the predictors across the equations. We can test the hypothesis that the coefficient for female is 0 for all three outcome variables, as shown below.

test female
 (1) [read]female = 0.0

 (2) [write]female = 0.0

 (3) [math]female = 0.0

 chi2(3) = 35.59

 Prob > chi2 = 0.0000

We can also test the hypothesis that the coefficient for female is 0 for just read and math. Note that [read]female means the coefficient for female for the outcome variable read.

test [read]female [math]female

 (1) [read]female = 0.0

 (2) [math]female = 0.0

 chi2(2) = 0.85

 Prob > chi2 = 0.6541

We can also test the hypothesis that the coefficients for prog1 and prog3 are 0 for all three outcome variables, as shown below.

test prog1 prog3
 (1) [read]prog1 = 0.0

 (2) [write]prog1 = 0.0

 (3) [math]prog1 = 0.0

 (4) [read]prog3 = 0.0

 (5) [write]prog3 = 0.0

 (6) [math]prog3 = 0.0

 chi2(6) = 72.45

 Prob > chi2 = 0.0000

4.5.2 Multivariate Regression
Let's now use multivariate regression using the mvreg command to look at the same analysis that we saw in the sureg example above, estimating the following 3 models.

 read = female prog1 prog3

 write = female prog1 prog3

 math = female prog1 prog3
If you don't have the hsb2 data file in memory, you can use it below and then create the dummy variables for prog1 - prog3.

use http://www.ats.ucla.edu/stat/stata/webbooks/reg/hsb2
tabulate prog, gen(prog)
<output omitted>

Below we use mvreg to predict read, write and math from female, prog1 and prog3. Note that the top part of the output is similar to the sureg output in that it gives an overall summary of the model for each outcome variable, however the results are somewhat different and the sureg uses a Chi-Square test for the overall fit of the model, and mvreg uses an F-test. The lower part of the output appears similar to the sureg output; however, when you compare the standard errors you see that the results are not the same. These standard errors correspond to the OLS standard errors, so these results below do not take into account the correlations among the residuals (as do the sureg results).

mvreg read write math = female prog1 prog3
Equation Obs Parms RMSE "R-sq" F P

--

read 200 4 9.348725 0.1811 14.45211 0.0000

write 200 4 8.32211 0.2408 20.7169 0.0000

math 200 4 8.281151 0.2304 19.56237 0.0000

--

 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

read |

 female | -1.208582 1.327672 -0.910 0.364 -3.826939 1.409774

 prog1 | -6.42937 1.665893 -3.859 0.000 -9.714746 -3.143993

 prog3 | -9.976868 1.606428 -6.211 0.000 -13.14497 -6.808765

 _cons | 56.8295 1.170562 48.549 0.000 54.52099 59.13802

---------+--

write |

 female | 4.771211 1.181876 4.037 0.000 2.440385 7.102037

 prog1 | -4.832929 1.482956 -3.259 0.001 -7.757528 -1.908331

 prog3 | -9.438071 1.430021 -6.600 0.000 -12.25827 -6.617868

 _cons | 53.62162 1.042019 51.459 0.000 51.56661 55.67662

---------+--

math |

 female | -.6737673 1.176059 -0.573 0.567 -2.993122 1.645587

 prog1 | -6.723945 1.475657 -4.557 0.000 -9.634149 -3.81374

 prog3 | -10.32168 1.422983 -7.254 0.000 -13.128 -7.515352

 _cons | 57.10551 1.03689 55.074 0.000 55.06062 59.1504

--

Now, let's test female. Note, that female was statistically significant in only one of the three equations. Using the test command after mvreg allows us to test female across all three equations simultaneously. And, guess what? It is significant. This is consistent with what we found using sureg (except that sureg did this test using a Chi-Square test).

test female
 (1) [read]female = 0.0

 (2) [write]female = 0.0

 (3) [math]female = 0.0

 F(3, 196) = 11.63

 Prob > F = 0.0000

We can also test prog1 and prog3, both separately and combined. Remember these are multivariate tests.

test prog1
 (1) [read]prog1 = 0.0

 (2) [write]prog1 = 0.0

 (3) [math]prog1 = 0.0

 F(3, 196) = 7.72

 Prob > F = 0.0001

test prog3
 (1) [read]prog3 = 0.0

 (2) [write]prog3 = 0.0

 (3) [math]prog3 = 0.0

 F(3, 196) = 21.47

 Prob > F = 0.0000

test prog1 prog3
 (1) [read]prog1 = 0.0

 (2) [write]prog1 = 0.0

 (3) [math]prog1 = 0.0

 (4) [read]prog3 = 0.0

 (5) [write]prog3 = 0.0

 (6) [math]prog3 = 0.0

 F(6, 196) = 11.83

 Prob > F = 0.0000

Many researchers familiar with traditional multivariate analysis may not recognize the tests above. They don't see Wilks' Lambda, Pillai's Trace or the Hotelling-Lawley Trace statistics, statistics that they are familiar with. It is possible to obtain these statistics using the mvtest command written by David E. Moore of the University of Cincinnati. mvtest , which UCLA updated to work with Stata 6 and above, can be downloaded over the internet like this.

net from http://www.ats.ucla.edu/stat/stata/ado/analysis

net install mvtest
Now that we have downloaded it, we can use it like this.

mvtest female

 MULTIVARIATE TESTS OF SIGNIFICANCE

Multivariate Test Criteria and Exact F Statistics for

the Hypothesis of no Overall "female" Effect(s)

 S=1 M=.5 N=96

Test Value F Num DF Den DF Pr > F

Wilks' Lambda 0.84892448 11.5081 3 194.0000 0.0000

Pillai's Trace 0.15107552 11.5081 3 194.0000 0.0000

Hotelling-Lawley Trace 0.17796108 11.5081 3 194.0000 0.0000

mvtest prog1 prog3
 MULTIVARIATE TESTS OF SIGNIFICANCE

Multivariate Test Criteria and Exact F Statistics for

the Hypothesis of no Overall "prog1 prog3" Effect(s)

 S=2 M=0 N=96

Test Value F Num DF Den DF Pr > F

Wilks' Lambda 0.73294667 10.8676 6 388.0000 0.0000

Pillai's Trace 0.26859190 10.0834 6 390.0000 0.0000

Hotelling-Lawley Trace 0.36225660 11.6526 6 386.0000 0.0000

We will end with an mvtest including all of the predictor variables. This is an overall multivariate test of the model.

mvtest female prog1 prog3
 MULTIVARIATE TESTS OF SIGNIFICANCE

Multivariate Test Criteria and Exact F Statistics for

the Hypothesis of no Overall "female prog1 prog3" Effect(s)

 S=3 M=-.5 N=96

Test Value F Num DF Den DF Pr > F

Wilks' Lambda 0.62308940 11.2593 9 472.2956 0.0000

Pillai's Trace 0.41696769 10.5465 9 588.0000 0.0000

Hotelling-Lawley Trace 0.54062431 11.5734 9 578.0000 0.0000

The sureg and mvreg commands both allow you to test multi-equation models while taking into account the fact that the equations are not independent. The sureg command allows you to get estimates for each equation which adjust for the non-independence of the equations, and it allows you to estimate equations which don't necessarily have the same predictors. By contrast, mvreg is restricted to equations that have the same set of predictors, and the estimates it provides for the individual equations are the same as the OLS estimates. However, mvreg (especially when combined with mvtest) allows you to perform more traditional multivariate tests of predictors.

4.6 Summary
This chapter has covered a variety of topics that go beyond ordinary least squares regression, but there still remain a variety of topics we wish we could have covered, including the analysis of survey data, dealing with missing data, panel data analysis, and more. And, for the topics we did cover, we wish we could have gone into even more detail. One of our main goals for this chapter was to help you be aware of some of the techniques that are available in Stata for analyzing data that do not fit the assumptions of OLS regression and some of the remedies that are possible. If you are a member of the UCLA research community, and you have further questions, we invite you to use our consulting services to discuss issues specific to your data analysis.

4.7 Self Assessment

1. Use the crime data file that was used in chapter 2 (use http://www.ats.ucla.edu/stat/stata/webbooks/reg/crime) and look at a regression model predicting murder from pctmetro, poverty, pcths and single using OLS and make a avplots and a lvr2plot following the regression. Are there any states that look worrisome? Repeat this analysis using regression with robust standard errors and show avplots for the analysis. Repeat the analysis using robust regression and make a manually created lvr2plot. Also run the results using qreg. Compare the results of the different analyses. Look at the weights from the robust regression and comment on the weights.

2. Using the elemapi2 data file (use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2) pretend that 550 is the lowest score that a school could achieve on api00, i.e., create a new variable with the api00 score and recode it such that any score of 550 or below becomes 550. Use meals, ell and emer to predict api scores using 1) OLS to predict the original api score (before recoding) 2) OLS to predict the recoded score where 550 was the lowest value, and 3) using tobit to predict the recoded api score indicating the lowest value is 550. Compare the results of these analyses.

3. Using the elemapi2 data file (use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2) pretend that only schools with api scores of 550 or higher were included in the sample. Use meals, ell and emer to predict api scores using 1) OLS to predict api from the full set of observations, 2) OLS to predict api using just the observations with api scores of 550 or higher, and 3) using truncreg to predict api using just the observations where api is 550 or higher. Compare the results of these analyses.

4. Using the hsb2 data file (use http://www.ats.ucla.edu/stat/stata/webbooks/reg/hsb2) predict read from science, socst, math and write. Use the testparm and test commands to test the equality of the coefficients for science, socst and math. Use cnsreg to estimate a model where these three parameters are equal.

5. Using the elemapi2 data file (use http://www.ats.ucla.edu/stat/stata/webbooks/reg/elemapi2) consider the following 2 regression equations.

api00 = meals ell emer

api99 = meals ell emer

Estimate the coefficients for these predictors in predicting api00 and api99 taking into account the non-independence of the schools. Test the overall contribution of each of the predictors in jointly predicting api scores in these two years. Test whether the contribution of emer is the same for api00 and api99.

Click here for our answers to these self assessment questions.

4.8 For more information
· Stata Manuals

· [R] rreg

· [R] qreg

· [R] cnsreg

· [R] tobit

· [R] truncreg

· [R] eivreg

· [R] sureg

· [R] mvreg

· [U] 23 Estimation and post-estimation commands

· [U] 29 Overview of model estimation in Stata

· Web Links

· How standard errors with cluster() can be smaller than those without

· Robust and cluster() options on areg
· Advantages of the robust variance estimator

· How to obtain robust standard errors for tobit
· Pooling data in linear regression

Stata FAQ
How does one do regression when the dependent variable is a proportion?

This FAQ is an elaboration of a FAQ by Allen McDowell of Stata Corporation. Go to www.stata.com/support/faqs/stat/logit.html for the original.

Proportion data has values that fall between zero and one. Naturally, it would be nice to have the predicted values also fall between zero and one. A common solution for this is to perform a logit transformation on the data.

We will demonstrate this using a dataset in which the dependent variable, meals, is the proportion of students receiving free or reduced priced meals at school.

use http://www.ats.ucla.edu/stat/stata/faq/proportion
The logit transform looks like this ln(y/(1-y)) and is not defined when y equals zero or one. Because our data has both zeros and ones will will replace those values with .0001 and .9999 respectively.

replace meals = .0001 if meals==0

replace meals = .9999 if meals==1
Now we can compute the transformed variable and use it in an OLS regression model.

generate lgtmeals = ln(meals/(1-meals))

regress lgtmeals yr_rnd parented api99

 Source | SS df MS Number of obs = 4257

-------------+------------------------------ F(3, 4253) = 2292.19

 Model | 19823.6953 3 6607.89844 Prob > F = 0.0000

 Residual | 12260.5135 4253 2.88279181 R-squared = 0.6179

-------------+------------------------------ Adj R-squared = 0.6176

 Total | 32084.2089 4256 7.53858291 Root MSE = 1.6979

--

 lgtmeals | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 yr_rnd | .134236 .0718586 1.87 0.062 -.0066443 .2751163

 parented | -.9668461 .063463 -15.23 0.000 -1.091267 -.8424255

 api99 | -.0108436 .0003541 -30.62 0.000 -.0115378 -.0101493

 _cons | 9.659534 .1766619 54.68 0.000 9.313185 10.00588

--

Next, we will compute predicted scores from the model and transform them back so that they are scaled the same way as the original proportions.

predict prelgt

generate premeals = 1/(1 + exp(-prelgt))

summarize meals premeals
 Variable | Obs Mean Std. Dev. Min Max

-------------+---

 meals | 4421 .5188072 .3107231 .0001 .9999

 premeals | 4257 .5445602 .338018 .0058884 .9957454

As a contrast, let's run the same analysis without the transformation. We will then graph the original dependent variable and the two predicted variables against api99.

regress meals yr_rnd parented api99
 Source | SS df MS Number of obs = 4257

-------------+------------------------------ F(3, 4253) = 6752.22

 Model | 338.097096 3 112.699032 Prob > F = 0.0000

 Residual | 70.985399 4253 .016690665 R-squared = 0.8265

-------------+------------------------------ Adj R-squared = 0.8264

 Total | 409.082495 4256 .096119007 Root MSE = .12919

--

 meals | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--

 yr_rnd | .0024454 .0054678 0.45 0.655 -.0082742 .013165

 parented | -.1298907 .0048289 -26.90 0.000 -.1393579 -.1204234

 api99 | -.0014118 .0000269 -52.40 0.000 -.0014646 -.0013589

 _cons | 1.766162 .0134423 131.39 0.000 1.739808 1.792516

--

predict preols
/* figure 1: proportion dependent variable */

graph twoway scatter meals api99, yline(0 1) msym(oh)
[image: image53.png]
/* figure 2: predicted values from model with logit transformation */

graph twoway scatter premeals api99, yline(0 1) msym(oh)
[image: image54.png]
/* figure 3: predicted values from model without transformation */

graph twoway scatter preols api99, yline(0 1) msym(oh)
[image: image55.png]
Note that the values from figures 1 and 2 fall within the range of zero to one while in figure 3 the values go beyond those bounds.

Let's finish by looking a the correlations of the predicted values with the dependent variable, meals
corr meals premeals preols
(obs=4257)

 | meals premeals preols

-------------+---------------------------

 meals | 1.0000

 premeals | 0.9095 1.0000

 preols | 0.9091 0.9762 1.0000

Note that the correlation between meals and premeals is slightly higher than for meals and preols.

Interpretation

It can be a difficult matter to interpret the results from the logit transformed data. ATS has written a program, protab, that can help with the interpretation. protab can be downloaded over the Internet from with Stata by typing findit protab (see How can I used the findit command to search for programs and get additional help? for more information about using findit).

protab computes predicted proportions for different values of a predictor variable while holding the other variables at their mean value. The user can also fix the values of the other variables to any value they choose.

. protab yr_rnd
 Value of | Predicted

 yr_rnd | Proportions

 1 | .62659176

 2 | .62716374

 Values of covariates

 parented | 2.7492976

 api99 | 633.16128

protab parented
 Value of | Predicted

 parented | Proportions

 1 | .6781489

 2 | .64916872

 3 | .61904496

 4 | .58797633

 5 | .55619044

 Values of covariates

 yr_rnd | 1.1789188

 api99 | 633.16128

protab parented, x(yr_rnd=0)
 Value of | Predicted

 parented | Proportions

 1 | .67751934

 2 | .64851185

 3 | .61836485

 4 | .58727773

 5 | .5554787

 Values of covariates

 yr_rnd | 0

 api99 | 633.16128

protab parented, x(yr_rnd=1)
 Value of | Predicted

 parented | Proportions

 1 | .6780534

 2 | .64906906

 3 | .61894178

 4 | .58787033

 5 | .55608244

 Values of covariates

 yr_rnd | 1

 api99 | 633.16128
Stata FAQ
How do I interpret odds ratios in logistic regression?

Introduction

Let's begin with probability. Let's say that the probability of success is .8, thus

p = .8

Then the probability of failure is

q = 1 - p = .2

The odds of success are defined as

odds(success) = p/q = .8/.2 = 4,

that is, the odds of success are 4 to 1. The odds of failure would be

odds(failure) = q/p = .2/.8 = .25.

This looks a little strange but it is really saying that the odds of failure are 1 to 4. The odds of success and the odds of failure are just reciprocals of one another, i.e., 1/4 = .25 and 1/.25 = 4. Next, we will add another variable to the equation so that we can compute and odds ratio.

Another Example

This example is adapted from Pedhazur (1997). Suppose that seven out of 10 males are admitted to an engineering school while three of 10 females are admitted. The probabilities for admitting a male are,

p = 7/10 = .7 q = 1 - .7 = .3

Here are the same probabilities for females,

p = 3/10 = .3 q = 1 - .3 = .7

Now we can use the probabilities to compute the admission odds for both males and females,

odds(male) = .7/.3 = 2.33333
odds(female) = .3/.7 = .42857

Next, we compute the odds ratio for admission,

OR = 2.3333/.42857 = 5.44

Thus, the odds of a male being admitted are 5.44 times as large than for a female.

Logistic Regression in Stata

Here are the Stata logistic regression commands and output for the example above. In this example admit is coded 1 for Yes and 0 for No and gender is coded 1 for Male and 0 for Female. In Stata, the logistic command produces results in terms of odds ratios while logit produces results in terms of coefficients.

input admit gender freq

1 1 7

1 0 3

0 1 3

0 0 7

end

logistic admit gender [weight=freq]
Logit estimates Number of obs = 20

 LR chi2(1) = 3.29

 Prob > chi2 = 0.0696

Log likelihood = -12.217286 Pseudo R2 = 0.1187

admit |Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

------+--

gender|5.444444 5.313234 1.736 0.082 .8040183 36.86729

logit admit gender [weight=freq]
Logit estimates Number of obs = 20

 LR chi2(1) = 3.29

 Prob > chi2 = 0.0696

Log likelihood = -12.217286 Pseudo R2 = 0.1187

--

 admit | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------+--

gender | 1.694596 .9759001 1.736 0.082 -.2181333 3.607325

 _cons |-.8472979 .6900656 -1.228 0.220 -2.199801 .5052058

Note that z = 1.736 for the coefficient for gender and for the odds ratio for gender.

About Logits

There is a direct relationship between the coefficients produced by logit and the odds ratios produced by logistic. First, let's define what is meant by a logit: A logit is defined as the log base e (log) of the odds,

[1] logit(p) = log(odds) = log(p/q)

Logistic regression is in reality ordinary regression using the logit as the response variable,

[2] logit(p) = a + bX
or
[3] log(p/q) = a + bX

This means that the coefficients in logistic regression are in terms of the log odds, that is, the coefficient 1.694596 implies that a one unit change in gender results in a 1.694596 unit change in the log of the odds. Equation [3] can be expressed in odds by getting rid of the log. This is done by taking e to the power for both sides of the equation.

[4] p/q = ea + bX

The end result of all the mathematical manipulations is that the odds ratio can be computed by raising e to the power of the logistic coefficient,

[5] OR = eb = e1.694596 = 5.44

Stata FAQ: How can I merge multiple files in Stata?

This FAQ was developed by the Graduate Statistical Assistant Program at Boston College. We are grateful for their permission to reproduce this FAQ here.

When the number of variables in a data set to be analyzed with Stata is larger than 2,047 (very likely with large surveys), the dataset is divided into several segments, each saved as a Stata dataset (.dta file). In order to work with information contained in two or more .dta files it is necessary to merge the segments into a new single file which must not contain more than 2,047 variables. Here is a list of steps to construct a new database with information merged from different files. Recall that any manipulation of the data made with a Stata do-file allows you to review and/or repeat the procedure more easily; an example of how to make a do-file is given below.

1. Review the codebook or list of variables and determine what information is needed and which files contain the desired variables.

2. Read into Stata the first file, or segment:

use filename.dta
Note that an unique ID for each case (observation) must be provided in each file to be merged. Typically the ID for a time series database is the date of the observation. For a cross section, it is the ID of the cross section unit (family identifier, firm CUSIP, etc.), and in panel data two characteristics are needed to identify each observation: date and ID. However for panel data, sometimes a "case ID" is provided to facilitate merging.

It is important to ensure that the form in which the unique ID is held in each file must match: i.e., you can not match a "str8" (8-character string) to an "str6" ID, nor can you match a string to an integer. Use Stata's "describe" command to ensure that the name and data type of the ID variable are the same in all files.

3. Discard the variables that are NOT needed (keeping the case ID); this can be done in at least two ways. Wildcards (*) and hyphens (-) may be used in the varlists; see "help varlist" for their use.

if the useful variables can be listed more easily:

keep caseID varname1 varname2 varnameN
if the unwanted variables can be listed more easily:

drop varname1 varname2 varnameN
Remember that the case ID must be part of the new file.

4. Verify that only the desired variables are in memory:

desc

5. Sort the data by case ID:

sort caseID
6. Save the sorted data currently in memory with a different name:

save newfile#.dta
7. Repeat steps 2 to 6 for all files containing the desired variables. Finally you will end up with a set of new files (newfile1.dta, newfile2.dta, newfileJ.dta) to be merged into a new dataset. Now you are ready to merge the data.

The merge command merges corresponding observations from the dataset currently in memory (called the master dataset) with those from a different Stata-format dataset (called the using dataset) into single observations. A new variable _merge is created for informative purposes (described below). Both files must be previously sorted by the merge variable(s), e.g. case ID.

8. Merge the first two new files.

a) Read the master dataset (newfile1.dta recently created):

use newfile1.dta, clear

b) Merge the data with the using dataset (newfile2.dta):

merge caseID using newfile2.dta
c) Tabulate _merge:

tab _merge

The variable _merge is created automatically and it takes the following values:

_merge==1 if the observation was taken from the master data only

_merge==2 if the observation was taken from the using data only

_merge==3 if the observation match both master and using data

You can use the tabulated information to check if the data were merged as desired.

d) Drop the _merge variable:

drop _merge

e) If there are more than two files to be merged, use the current data in memory as the master dataset and repeat steps 8b-8d for each file to be merged (newfile3.dta, newfile4.dta, newfileJ.dta).

9. Save the new dataset:

save newdataset.dta

Sample program

Here is an example of how a do-file can be used to merge data contained in three hypothetical segments.

· Variables to merge: X11, X12, X13, X21, X22, X23, X31, X32 and X33

· Segments containing these variables: segment1.dta, segment2.dta and segment3.dta

· Identifier: ID (the variable ID, contained in each of the three segments)

This do file merges some variables from the .dta files: segment1.dta, segment2.dta and segment3.dta into a new file named newdatabase.dta. This do-file will be documented in the log-file logmerge.smcl for further reference.

/* open the log file*/

log using logmerge.smcl, replace

/*Generates three .dta files containing only desired variables*/

use segment1.dta, clear

keep ID X11 X12 X13

sort ID

save newfile1.dta, replace

use segment2.dta, clear

keep ID X21 X22 X23

sort ID

save newfile2.dta, replace

use segment2.dta, clear

keep ID X31 X32 X33

sort ID

save newfile3.dta, replace

clear

/*Merges the three new files generated*/

use newfile1.dta, clear

merge ID using newfile2.dta

tab _merge /*check the file logmerge.smcl to verify that _merge takes the appropriate value*/

drop _merge

/* if _merge is not dropped an error will be generated, up to this point two segments

were merged successfully*/

merge ID using newfile3.dta

tab _merge /*check the file logmerge.smcl to verify that _merge takes the appropriate value*/

drop _merge

/* the three segments were merged successfully, now save the final new database*/

save newdatabase.dta

clear

log close

/* The individual segment files may now be discarded or compressed if desired */

Thanks to Petia Petrova for contributions to this document.

Last updated: 20 July 2001 by Kolver Hernandez / cfb

Stata FAQ
How can I quickly recode continuous variables into groups?

There may be times that you would like to convert a continuous variable into groups. For example, you might want to convert a continuous reading score that ranges from 0 to 100 into 3 groups (say low, medium and high). You can use egen with the cut() function to do this quickly and easily, as illustrated below. We will illustrate this with the hsb2 data file with a variable called write that ranges from 31 to 67.

use http://www.ats.ucla.edu/stat/stata/notes/hsb2, clear

summarize write
 Variable | Obs Mean Std. Dev. Min Max

-------------+--

 write | 200 52.775 9.478586 31 67

We can use egen with the cut() function to make a variable called writecat that groups the variable write into the following 4 categories.

30 up to (but not including) 40
40 up to (but not including) 50
50 up to (but not including) 60
60 up to (but not including) 70

egen writecat = cut(write), at(30,40,50,60,70)
The table command below is used to verify that the data is grouped as we expected. We can see that when writecat is in the lowest category (30) that write ranges from 31 to 39, and so forth as we expect, e.g., the values when writecat is in category 30 correspond to write having values of 30 up to (but not including) 40.

table writecat, contents(min write max write)

 writecat | min(write) max(write)

----------+-----------------------

 30 | 31 39

 40 | 40 49

 50 | 50 59

 60 | 60 67

Here we use the same command but our last category is 50 up to 60. As you see, it generates a missing value because there are a number of values that are 60 or higher and thus outside of the range we specified. This shows that if there are values outside of the range you provide, those will be assigned a missing value.

egen writecat2 = cut(write), at(30,40,50,60)
(53 missing value generated)

If we use the icodes option, cut() will create integer codes 0, 1, 2 and so forth. In the example below, you can see that it created codes 0 1 2 and 3.

egen writecat3 = cut(write), at(30,40,50,60,70) icodes

table writecat3, contents(min write max write)

writecat3 | min(write) max(write)

----------+-----------------------

 0 | 31 39

 1 | 40 49

 2 | 50 59

 3 | 60 67

If you use label option (which automatically implies icode) then it will create integer values like above, but it will also create value labels. As you see below, the variable read4 is labeled 30- 40- 50- and 60-.

egen writecat4 = cut(write), at(30,40,50,60,70) label

table writecat4, contents(min write max write)

writecat4 | min(write) max(write)

----------+-----------------------

 30- | 31 39

 40- | 40 49

 50- | 50 59

 60- | 60 67

We use the nolabel option to suppress the display of the value labels and you can see that the variable really is coded 0 1 2 and 3.

tabulate writecat4, nolabel
 writecat4 | Freq. Percent Cum.

------------+-----------------------------------

 0 | 21 10.50 10.50

 1 | 51 25.50 36.00

 2 | 75 37.50 73.50

 3 | 53 26.50 100.00

------------+-----------------------------------

 Total | 200 100.00

If you prefer, you can ask cut() to choose the cutoffs to form groups with approximately the same number per group. Below we request the creation of 4 (rouighly) equally sized groups.

egen writecat5 = cut(write), group(4) label

table write writecat5

writing | writecat5

score | 31- 45.5- 54- 60-

----------+---------------------------

 31 | 4

 33 | 4

 35 | 2

 36 | 2

 37 | 3

 38 | 1

 39 | 5

 40 | 3

 41 | 10

 42 | 2

 43 | 1

 44 | 12

 45 | 1

 46 | 9

 47 | 2

 49 | 11

 50 | 2

 52 | 15

 53 | 1

 54 | 17

 55 | 3

 57 | 12

 59 | 25

 60 | 4

 61 | 4

 62 | 18

 63 | 4

 65 | 16

 67 | 7

Stata FAQ
How can I quickly recode missing values into different categories?

Stata allows us to code different types of numeric missing values. It has 27 numeric missing categories. ".a" to ".z" and ".". In this page we will show how to code missing values into different categories.

First we create a data set for the purpose of illustration. In this data set, all the variables are numeric and both variable female and ses have missing values. The non-missing values for variable female is 0 (for male) and 1 (for female). The non-missing values for variable ses is 0 (low), 1 (med) and 2 (high). The rest of the values are considered to be missing values.

clear

input score female ses

56 1 1

62 1 2

73 0 3

67 -999 1

57 0 1

56 -99 2

57 1 -999

78 -2 1

67 1 -1

92 1 1

57 -1 2

57 0 -1

58 0 3

78 1 0

end
Let's say that we want to code -999 into one category, -99 into another and the rest of missing values into a third category for all the variables.

Method 1: Using command replace

We can manually replace missing values with ".a" for -999, ".b" for -99 and .c for the rest of missing values. For example, for variable female, we can do the following:

replace female = .a if female ==-999

replace female = .b if female ==-99

replace female = .c if female >=-3 & female <0

list, clean
 score female ses

 1. 56 1 1

 2. 62 1 2

 3. 73 0 3

 4. 67 .a 1

 5. 57 0 1

 6. 56 .b 2

 7. 57 1 -999

 8. 78 .c 1

 9. 67 1 -1

 10. 92 1 1

 11. 57 .c 2

 12. 57 0 -1

 13. 58 0 3

 14. 78 1 1

codebook female

female (unlabeled)

 type: numeric (float)

 range: [0,1] units: 1

 unique values: 2 missing .: 0/14

 unique mv codes: 3 missing .*: 4/14

 tabulation: Freq. Value

 4 0

 6 1

 1 .a

 1 .b

 2 .c

The codebook command above shows that variable female has three types of missing values and 4 missing values.

Method 2: Using command mvdecode

Method 1 may not be the best way of recoding missing values into different categories. For one thing, we have to do it one variable at a time. Stata's mvdecocde command comes handy for us.

mvdecode female ses, mv(-999=.a \-99=.b \ -3/-1 = .c)
 female: 4 missing values generated

 ses: 3 missing values generated

list, clean
 score female ses

 1. 56 1 1

 2. 62 1 2

 3. 73 0 3

 4. 67 .a 1

 5. 57 0 1

 6. 56 .b 2

 7. 57 1 .a

 8. 78 .c 1

 9. 67 1 .c

 10. 92 1 1

 11. 57 .c 2

 12. 57 0 .c

 13. 58 0 3

 14. 78 1 0

Better yet, we can use the key word _all to refer to all the variables in the data set.

mvdecode _all, mv(-999=.a \-99=.b \ -3/-1 = .c)
 female: 4 missing values generated

 ses: 3 missing values generated

Going from missing value codes to numeric values

The other issue that we will cover here is how to change missing value codes back to numeric values. The command mvencode is paired with command mvdecode that we just covered above and is the one to use here.

mvencode female, mv(.a = -999\ .b = -99 \ .c = -50)
 female: 4 missing values recoded

list, clean
 score female ses

 1. 56 1 1

 2. 62 1 2

 3. 73 0 3

 4. 67 -999 1

 5. 57 0 1

 6. 56 -99 2

 7. 57 1 .a

 8. 78 -50 1

 9. 67 1 .c

 10. 92 1 1

 11. 57 -50 2

 12. 57 0 .c

 13. 58 0 3

 14. 78 1 1

Stata FAQ
How can I quickly recode missing values into different categories?

Stata allows us to code different types of numeric missing values. It has 27 numeric missing categories. ".a" to ".z" and ".". In this page we will show how to code missing values into different categories.

First we create a data set for the purpose of illustration. In this data set, all the variables are numeric and both variable female and ses have missing values. The non-missing values for variable female is 0 (for male) and 1 (for female). The non-missing values for variable ses is 0 (low), 1 (med) and 2 (high). The rest of the values are considered to be missing values.

clear

input score female ses

56 1 1

62 1 2

73 0 3

67 -999 1

57 0 1

56 -99 2

57 1 -999

78 -2 1

67 1 -1

92 1 1

57 -1 2

57 0 -1

58 0 3

78 1 0

end
Let's say that we want to code -999 into one category, -99 into another and the rest of missing values into a third category for all the variables.

Method 1: Using command replace

We can manually replace missing values with ".a" for -999, ".b" for -99 and .c for the rest of missing values. For example, for variable female, we can do the following:

replace female = .a if female ==-999

replace female = .b if female ==-99

replace female = .c if female >=-3 & female <0

list, clean
 score female ses

 1. 56 1 1

 2. 62 1 2

 3. 73 0 3

 4. 67 .a 1

 5. 57 0 1

 6. 56 .b 2

 7. 57 1 -999

 8. 78 .c 1

 9. 67 1 -1

 10. 92 1 1

 11. 57 .c 2

 12. 57 0 -1

 13. 58 0 3

 14. 78 1 1

codebook female

female (unlabeled)

 type: numeric (float)

 range: [0,1] units: 1

 unique values: 2 missing .: 0/14

 unique mv codes: 3 missing .*: 4/14

 tabulation: Freq. Value

 4 0

 6 1

 1 .a

 1 .b

 2 .c

The codebook command above shows that variable female has three types of missing values and 4 missing values.

Method 2: Using command mvdecode

Method 1 may not be the best way of recoding missing values into different categories. For one thing, we have to do it one variable at a time. Stata's mvdecocde command comes handy for us.

mvdecode female ses, mv(-999=.a \-99=.b \ -3/-1 = .c)
 female: 4 missing values generated

 ses: 3 missing values generated

list, clean
 score female ses

 1. 56 1 1

 2. 62 1 2

 3. 73 0 3

 4. 67 .a 1

 5. 57 0 1

 6. 56 .b 2

 7. 57 1 .a

 8. 78 .c 1

 9. 67 1 .c

 10. 92 1 1

 11. 57 .c 2

 12. 57 0 .c

 13. 58 0 3

 14. 78 1 0

Better yet, we can use the key word _all to refer to all the variables in the data set.

mvdecode _all, mv(-999=.a \-99=.b \ -3/-1 = .c)
 female: 4 missing values generated

 ses: 3 missing values generated

Going from missing value codes to numeric values

The other issue that we will cover here is how to change missing value codes back to numeric values. The command mvencode is paired with command mvdecode that we just covered above and is the one to use here.

mvencode female, mv(.a = -999\ .b = -99 \ .c = -50)
 female: 4 missing values recoded

list, clean
 score female ses

 1. 56 1 1

 2. 62 1 2

 3. 73 0 3

 4. 67 -999 1

 5. 57 0 1

 6. 56 -99 2

 7. 57 1 .a

 8. 78 -50 1

 9. 67 1 .c

 10. 92 1 1

 11. 57 -50 2

 12. 57 0 .c

 13. 58 0 3

 14. 78 1 1

Stata FAQ
How can I quickly recode continuous variables into groups?

There may be times that you would like to convert a continuous variable into groups. For example, you might want to convert a continuous reading score that ranges from 0 to 100 into 3 groups (say low, medium and high). You can use egen with the cut() function to do this quickly and easily, as illustrated below. We will illustrate this with the hsb2 data file with a variable called write that ranges from 31 to 67.

use http://www.ats.ucla.edu/stat/stata/notes/hsb2, clear

summarize write
 Variable | Obs Mean Std. Dev. Min Max

-------------+--

 write | 200 52.775 9.478586 31 67

We can use egen with the cut() function to make a variable called writecat that groups the variable write into the following 4 categories.

30 up to (but not including) 40
40 up to (but not including) 50
50 up to (but not including) 60
60 up to (but not including) 70

egen writecat = cut(write), at(30,40,50,60,70)
The table command below is used to verify that the data is grouped as we expected. We can see that when writecat is in the lowest category (30) that write ranges from 31 to 39, and so forth as we expect, e.g., the values when writecat is in category 30 correspond to write having values of 30 up to (but not including) 40.

table writecat, contents(min write max write)

 writecat | min(write) max(write)

----------+-----------------------

 30 | 31 39

 40 | 40 49

 50 | 50 59

 60 | 60 67

Here we use the same command but our last category is 50 up to 60. As you see, it generates a missing value because there are a number of values that are 60 or higher and thus outside of the range we specified. This shows that if there are values outside of the range you provide, those will be assigned a missing value.

egen writecat2 = cut(write), at(30,40,50,60)
(53 missing value generated)

If we use the icodes option, cut() will create integer codes 0, 1, 2 and so forth. In the example below, you can see that it created codes 0 1 2 and 3.

egen writecat3 = cut(write), at(30,40,50,60,70) icodes

table writecat3, contents(min write max write)

writecat3 | min(write) max(write)

----------+-----------------------

 0 | 31 39

 1 | 40 49

 2 | 50 59

 3 | 60 67

If you use label option (which automatically implies icode) then it will create integer values like above, but it will also create value labels. As you see below, the variable read4 is labeled 30- 40- 50- and 60-.

egen writecat4 = cut(write), at(30,40,50,60,70) label

table writecat4, contents(min write max write)

writecat4 | min(write) max(write)

----------+-----------------------

 30- | 31 39

 40- | 40 49

 50- | 50 59

 60- | 60 67

We use the nolabel option to suppress the display of the value labels and you can see that the variable really is coded 0 1 2 and 3.

tabulate writecat4, nolabel
 writecat4 | Freq. Percent Cum.

------------+-----------------------------------

 0 | 21 10.50 10.50

 1 | 51 25.50 36.00

 2 | 75 37.50 73.50

 3 | 53 26.50 100.00

------------+-----------------------------------

 Total | 200 100.00

If you prefer, you can ask cut() to choose the cutoffs to form groups with approximately the same number per group. Below we request the creation of 4 (rouighly) equally sized groups.

egen writecat5 = cut(write), group(4) label

table write writecat5

writing | writecat5

score | 31- 45.5- 54- 60-

----------+---------------------------

 31 | 4

 33 | 4

 35 | 2

 36 | 2

 37 | 3

 38 | 1

 39 | 5

 40 | 3

 41 | 10

 42 | 2

 43 | 1

 44 | 12

 45 | 1

 46 | 9

 47 | 2

 49 | 11

 50 | 2

 52 | 15

 53 | 1

 54 | 17

 55 | 3

 57 | 12

 59 | 25

 60 | 4

 61 | 4

 62 | 18

 63 | 4

 65 | 16

 67 | 7

Stata FAQ
Can I make regression tables that look like those in journal articles?

This FAQ illustrates the outreg command that makes regression tables in a format that is commonly used in journal articles. The outreg command was written by John Luke Gallup and appears in the Stata Technical Bulletin #49. You can download outreg from within Stata by typing findit outreg (see How can I used the findit command to search for programs and get additional help? for more information about using findit).

Let's illustrate use of the outreg command using the high school and beyond data file we use in our Stata Classes.

use http://www.ats.ucla.edu/stat/stata/notes/hsb1, clear
(highschool and beyond (200 cases))

We will run 3 regression models predicting the variable read. The first model will predict from the variable write, the second model will predict from math and write, and the third model will predict from socst, math, and write. We will use outreg to create a single table that will summarize these models side by side.

regress read write
 Source | SS df MS Number of obs = 200

---------+------------------------------ F(1, 198) = 109.52

 Model | 7450.28755 1 7450.28755 Prob > F = 0.0000

Residual | 13469.1324 198 68.0259215 R-squared = 0.3561

---------+------------------------------ Adj R-squared = 0.3529

 Total | 20919.42 199 105.122714 Root MSE = 8.2478

--

 read | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 write | .64553 .0616832 10.465 0.000 .5238896 .7671704

 _cons | 18.16215 3.307162 5.492 0.000 11.64037 24.68394

--

Here we use outreg to capture the results from the prior model, storing the output in the file test.doc and we suppress the variable labels and indicate we want to replace test.doc if it already existed.

outreg using test.doc, nolabel replace
Now we run our second regression model.

regress read math write
 Source | SS df MS Number of obs = 200

---------+------------------------------ F(2, 197) = 96.80

 Model | 10368.63 2 5184.31501 Prob > F = 0.0000

Residual | 10550.79 197 53.5573096 R-squared = 0.4956

---------+------------------------------ Adj R-squared = 0.4905

 Total | 20919.42 199 105.122714 Root MSE = 7.3183

--

 read | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 math | .5196538 .0703972 7.382 0.000 .380825 .6584826

 write | .3283984 .0695792 4.720 0.000 .1911828 .4656141

 _cons | 7.541599 3.26819 2.308 0.022 1.096471 13.98673

--

We run outreg again to capture the results of the second model, appending these results to the previous ones in test.doc.

outreg using test.doc, nolabel append
Now we run our third regression model.

regress read science socst math write
 Source | SS df MS Number of obs = 195

---------+------------------------------ F(4, 190) = 65.23

 Model | 11608.8938 4 2902.22346 Prob > F = 0.0000

Residual | 8453.08565 190 44.4899245 R-squared = 0.5787

---------+------------------------------ Adj R-squared = 0.5698

 Total | 20061.9795 194 103.412265 Root MSE = 6.6701

--

 read | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

 science | .2657521 .0648044 4.101 0.000 .1379236 .3935806

 socst | .2808959 .0581116 4.834 0.000 .1662691 .3955227

 math | .2961578 .0743467 3.983 0.000 .1495068 .4428087

 write | .1141745 .0724559 1.576 0.117 -.0287468 .2570959

 _cons | 2.001966 3.163988 0.633 0.528 -4.239088 8.243021

--
We run outreg again to capture the results of the third model.

outreg using test.doc, nolabel append
The contents of test.doc look like those below. Tabs are used between columns to get the columns to line up, so you will need to adjust your tab settings to get the tables to look as you desire.We have manually adjusted the spacing to show the columns properly.

 (1) (2) (3)

 read read read

write 0.646 0.328 0.114

 (10.47)** (4.72)** (1.58)

math 0.520 0.296

 (7.38)** (3.98)**

science 0.266

 (4.10)**

socst 0.281

 (4.83)**

Constant 18.162 7.542 2.002

 (5.49)** (2.31)* (0.63)

Observations 200 200 195

R-squared 0.36 0.50 0.58

Absolute value of t-statistics in parentheses

* significant at 5% level; ** significant at 1% level

