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Abstract

Social scientists from a variety of disciplines have long been captivated by the simplicity and
elegance of the two-person, binary choice, Prisoners' Dilemma (2x2 PD).  Over the years, the
domain of the research has been extended and applied to events that are neither two-person nor
binary.  We use a defining characteristic of the 2x2 PD to identify situations under which full
levels of contribution are suboptimal.  We propose, on the basis of that characteristic, an
extended definition and categorization of Prisoners' Dilemmas to n-person and non-binary
situation.  The new distinction is shown to point to differing normative and strategic imperatives
for the different categories of games. 
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     1/  Contribution here refers to the allocation of some resource, in which there is an implicit
maximum which corresponds to the individual's budget to this problem. 

     2/  We will not use subscripts for the payoffs to i, and j respectively unless
they are necessary for clarity. 

     3/  Here we use the conventional notation in which the first entry in the
ordered pair of payoffs refers to the payoff to the first (or Row) player and the
second to the second, (or Column) player.  The symmetry of the payoffs in
the example is not required for a definition of dominance.

When Is Universal Contribution Best for the Group?
Characterizing Optimality in the Prisoners' Dilemma

Introduction

Many social scientists, captivated by the simplicity and elegance of the two person, binary
choice, Prisoners' Dilemma (PD) Game (hereafter called a 2x2 PD), have extended analyses to
classes of events which are neither two person, nor binary (consider for example, Iwakura and
Saijo; Ostrom et. al.; Brams and Kilgour; Hardin; and Schelling).  One consequence of these
activities is a degree of ambiguity as to what exactly constitute Prisoners' Dilemmas.  Schelling
(1973, 1978) provided a graphical method for describing a variety of binary choice situations
with externalities, among them a number of n-person PD's (n-PD's).  He did not, however,
attempt to identify which of the situations constituted direct extensions of the 2x2 PD.  In his rich
description and discussion of these situations Schelling noted that some situations with
externalities had social optima which are obtainable with less than universal contribution.  But he
did not identify the analytic conditions which generate internal (v. corner) optima.

The discussion in this paper can best be thought of as a series of friendly clarifications and
extensions of Schelling's analysis.  We propose a generalized definition of the PD and identify
the conditions which guarantee an optimum in an n-PD at less than universal contribution.   This1

implies a categorization of n-PD's into those with optima at universal contribution and those in
which less than universal (we will refer to this as partial) contribution is optimal.  This
distinction will be shown to have both normative and practical implications. 

Reclassifying the Prisoners' Dilemma

The Traditional 2x2 PD

The rich tapestry captured in the 2x2 PD is built upon a tension between two elementary
principles: strategic dominance and Pareto optimality.  In any game of normal form, a strategy,
D, is said to be dominant if and only if for each other strategy C, D yields a better outcome for
the player than does C under each contingent choice of the other player.  Similarly, an outcome is
said to dominate another strongly when all players prefer the dominating outcome to the
dominated one.  An outcome, P, P  is said to be Pareto suboptimal if there is another outcome, R,2

R which both players prefer to P, P.  3

The traditional 2 person, binary, PD is represented in Table 1.  The two players are referred
to as i, and j.  The traditional algebraic notation labels the outcomes: R (reward), T (temptation),
S (sucker), and P (punishment).  The dominant strategy, "don't contribute," is labelled (D) and
the dominated strategy, "contribute," (C).  The 2x2 PD is endowed with the following properties:
1) Both players have a dominant strategy: D; 2) the Nash equilibrium outcome P,P (the joint



     4/  If the sum of the temptation and sucker payoffs is large enough to
violate inequality (3), the outcome of both players avoiding their dominant

i jstrategy is no longer Paretian.  The Pareto set would be made up of ð,{T , S }
i jand (1-ð),{S , T }, (where ð designates a probability of selection associated

i,jwith the outcome).  It is an outcome which, dominates R  as long as both ðS
+ (1-ð)T > R and ðT + (1-S)ð > R.  Of course, if the two players adopt mixed
strategies in a non-coordinated game to take advantage of a violation of
condition (3), P and R would enter as payoffs in a probabilistic fashion as
well.  There could still be a set of mixed strategies which yields an expected
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result reached via those strategies) is suboptimal in that it is smaller than R, R (the joint result
reached via the cooperative strategy of mutual contribution C). 

Table 1: The Two Person Binary PD
Player j's Strategic Options

Player i's Strategic Options Contribute (C) Don't Contribute (D)
Contribute (C) R, R S, T

Don't Contribute (D) T, S P, P

Analytically, these two properties can be represented directly as relationships between the
payoffs.  For defect (D) to dominate contribute (C), both the inequalities in (1) must hold.  

T > R and P > S (1) Dominance

By further specifying, as in (2), that R is preferred to P we insure that the Nash equilibrium is
dominated and the full ordering of the payoffs is established.  

T > R > P > S (2) Sub-optimality

The Nash outcome, which results from both playing their dominant strategies therefore leads to
the Pareto inferior outcome: P, P.  The first two properties, have been considered to be adequate
by some (Schelling, 1978, for example, p. 218), and is enough to generate the dominant strategies
and sub-optimal equilibrium mentioned above. 

In addition to these two conditions, a third condition is often identified as characterizing the
2x2 PD:  (S+T)/2 < R  (see Rapoport, p. 34).  This condition is traditionally justified by its
necessity to insure that R, R is in the Pareto set.  Without this condition, the solution to the
dilemma could focus on the probabilistic coordination over the pair of outcomes, S, T and T, S in
repeated plays of the game.  

To see this, consider the example in Table 2.

Table 2: A 2x2 Binary PD when Universal Contribution is not Pareto Optimal
Player j's Strategic Options

Player i's Strategic Options Contribute (C) Don't Contribute (D)
Contribute (C) 2, 2 0, 5

Don't Contribute (D) 5, 0 1, 1

A cooperative strategy which coordinated the players' asymmetric choices (where first one chose
D, while one chose C, and then the choices were reversed) would yield an expectation of payoffs
dominating the reward payoff R.   In this example, a 50-50 taking of turns would yield each4



payoff that dominates R,R.  But only by coordinating mixed strategies can
they achieve a Paretian lottery of mixing T and S.  

     5/  This characterization of the conditions for defection in a 2x2 PD as
involving an externality larger than the internality is a direct consequence of
the work of Bernholz (1976), Miller (1977) and Aldrich (1977) which showed
the standard 2x2 PD to be a special case of the Liberal Paradox (Sen 1970). 
But it is not a customary way of describing the properties of the PD. 

     6/  One could do this by insisting on either a finite set of strategic options,
or by specifying a continuous decision interval.  The latter presents us with
some advantages of analysis, and is pursued here.  The former can be
derived as a special case of the continuous representation.
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player an expectation of 2.5 (more than the 2 of both contributing).  So we can see that the
additional condition precludes a coordinated, asymmetric, cooperative, outcome of alternating
contribution with non-contribution, as a means of generating optimal returns to the two players in
repeated plays. 

It is convenient to interpret this third requirement from a slightly different perspective and to
use this to gain insight into how Prisoners' Dilemma games can be categorized.  To say that
(S+T)/2 < R is to require that:

R-S > T-R (3) Externality larger
than internality

In terms of the payoffs, we can interpret these differences as potential benefits and costs of
defection from a choice to contribute.  The internality of the decision (or the player's own benefit
from her defection) is T - R and the externality (the cost borne by the other contributor) is R - S. 
Then (3) can be interpreted as meaning that the negative effect of a given player's defection from
a universal contribution outcome on the other player (the externality of the decision) outweighs
the benefits obtain by the defector via that defection (the internality of the decision).   But this5

characterization implies an interpersonal comparison of the payoffs.  By taking advantage of the
symmetry of the game, however, one can re-interpret the difference, and avoid interpersonal
comparisons.  Condition (3) can be interpreted as requiring that the externality of j's choice of
defection on i be greater than the internality of i's choice to defect.  This insures that the Pareto
set contain a realizable outcome which dominates the suboptimal Nash equilibrium (and also
dominates all coordinated mixed strategies).  This will be the interpretation which we will use for
condition (3).  In the continuous strategy extension of the 2X2 PD, proposed below, those games
which violate condition (3) will be shown to we have optima at less than universal levels of
contribution.  

Expansion #1: The Continuous 2-PD

An obvious analytic limitation of the 2x2 PD, as defined above, is that it is restricted to
binary choices.  Many non-laboratory situations involve a much richer set of choices.  Some
research has been done to deal with the more general two-person situations which are non binary
(see for example, Brams and Kilgour, Chapter 3, 1988, Miller, 1977).  To deal with such
situations we can expand the strategy set to a continuous set.   Each player can be thought of as6

having a continuous resource, any portion of which can be contributed with the residual being
withheld.



     7/  Nothing requires that the PD be linear, or that the cost of a contribution
to a cooperative project be a constant.  An early algebraic representation of
the N-PD (Hardin 1971) made this assumption and it has generally been
carried on in the literature. 
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Figure 1: Displaying payoffs associated with extreme
strategies in a continuous strategy space

The graphic mode introduced by Schelling (1973, 1978) simplifies the presentation of the
problem.  It maps the payoffs of one player as a function of the possible choices of the other
player.  But it does so in terms of the two extreme strategies of the former; see Figure 1.  The two
parallel lines represent i's extreme strategies.  The bottom line represents "make a full
contribution" the top "make no contribution."  The y coordinate represents the payoff to player i
as a function of player j's contribution as measured along the x axis.  Thus the height of the lines
representing i's payoff is dependent upon the level of j's contribution.

The payoffs on the vertical axes refer to the values of the original 2x2 PD game.  The payoffs
associated with the strategies are represented as lines in the strategy/outcome space.  In the
simplest and characteristic case these payoffs are a linear increasing function of the amount
contributed by the other player.  Moreover, the two strategy/outcome lines are depicted as
parallel to represent the assumptions that the marginal cost to the player of allocating additional
resources to a contribution is constant as are the marginal increases in group benefits resulting
from equal marginal contributions.  Resources withheld are equally valuable at any level of
contribution by the other and resources contributed by the other are equally productive at all
contribution levels.   In this sort of diagram (see Figure 1) it should be obvious that the7

requirement of a dominant strategy (inequality (1)) demands that the line representing no
contribution always has to be above the line representing a full contribution.  The lines must not
cross.  The game represented here conforms to that property. 

Although the values of the
two strategies are shown explicitly
as lines, given the two
assumptions of linearity and
constant cost of allocation, we can
define the value of any strategy of
partial contribution.  The payoffs
to i, associated with the strategy of
allocating 50% of the budget for a
contribution, for example by i,
would be depicted by a line half
way between the two lines shown
and would be defined throughout
the range of j's possible choices,
and so on.

The second property of the
PD, that the Nash equilibria be suboptimal, is also satisfied in the game represented in the figure. 
The dominant strategy line, don't contribute, has, at its start, a value (P).  This is the payoff at the
left hand side when neither j nor i contribute.   That point is lower than the right hand end of the
contribution line (R), which is the payoff associated with both making full contributions.  In
other words, the value of mutual full contribution (R) is greater than the value of mutual non
contribution (P). 



     8/  R > P by Pareto Inferiority, and R-S = T-P  by parallelism, imply R-S >
T-R. 

     9/  It is easy to see that the defection line can be less steep than SR.  If it is
less steep then T-P < R-S and hence T+S < R+P < 2R.

     10/  What an unfortunate use of words: such games are called cooperative.  Traditional
prisoner dilemma games have a direct solution as a cooperative game: the core is RR.  When
condition 3 is violated the core shifts to a range (as described in footnote 4) of mixes of S and T. 
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But what of the third property of the PD?  What is the analogue of the property in the
representation in Figure 1?  To get a feel for the extension of inequality (3) to the payoffs
associated with strategy choices in a continuous game, recall that starting from mutual
contribution, (3) insists that the effect of j's decision not to make a contribution on i's payoffs (R-
S) must be larger than the effect of i's defection on her own payoff (T-R).  The effect of j's
defection from the full contribution of both parties on i's payoff can be read directly from the
graph.  It is the vertical distance between R and S: (R - S).  On the other hand, i's choice to (fully)
defect from a joint and full contribution strategy represents a gain of the distance between R and
T: (T - R).  

It is easy to show that the third traditional requirement of the 2x2 PD (that R-S > T-R) holds
in any game which conforms to the assumptions of dominance, the suboptimality of joint
defection and linear parallelism (i.e. constant and equal marginal returns).   To violate the8

inequality, the line representing defection must be steeper than the contribution payoff line.   But9

not all steeper lines will do.  Only some lines are sufficiently steep to insure that 2R < T+S.

The social optimum: The introduction of a continuous set of strategies raises other substantive
questions.  Specifically, in the traditional PD, optimality is achieved in a corner solution: it pays
for the group to have everyone contribute fully.  This is insured by the third condition, as
specified in (3).  When the condition is violated,  in the 2x2 PD the Pareto set can be made up
exclusively of lotteries over T, S and S, T attainable only via the adoption of coordinated mixed
strategies.  The analogue of such a set of coordinated mixed strategies in the continuous case is
the dashed line ST in Figure 1.  There, the Paretian outcome which spreads the risk evenly
between the 2 players would be the midpoint of ST. 

The conditions which permit coordinated mixed optima, internal to the strategy space, now
defined in expected value terms, are easily identified for the continuous 2-PD.  Preserving
conditions 1 and 2 from above to insure dominance and the Pareto suboptimality of defection, it
is specifically the absence of condition 3 that guarantees the existence of an internal optimum for
the group.  If R-S < T-R, or R < (T+S)/2, the social optimum occurs at less than full and
universal levels of contribution.  Graphically, this implies that the slope of the 'don't contribute'
line is greater than the slope of the contribute line.  The two strategy lines cannot be parallel. 
Further, the optimum would lie on ST.  This is not the equivalent of any non-coordinated mix of
the two players' strategies.  The proofs of these claims is provided in Appendix A.  To see,
intuitively why condition 3 is needed to guarantee that a full universal contribution is optimal,
recall that when it holds, full universal contribution is optimal precisely because the internality is
smaller than the externality. 

However, the traditional interest in the Prisoners' Dilemma is not when the game is played
with players who can make binding agreements.   Rather, the game is of most interest when such10



     11/  These games are referred to as non-cooperative.  See any general
text on game theory such as Luce and Raiffa (1957).

     12/  Folk theorems covering the sort of incentives which would be able to
yield subgame perfect choices which lead to optimality exist.  The folk
theorems all require considerably more apparatus to be carried through (e.g.
a specification of the time horizon, discount rates, etc.).  These are discussed
well in Fudenberg and Tirole (1991).  That such possibilities exist is a note of
optimism.
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Figure 2 Payoffs to i given aggregate choices of others

agreements are not achievable.   What precisely is required for the choice of such coordinated11

mixed strategies?  In fact, without such binding agreements, the choice of the coordinated mix of
outcomes becomes impossible, for by backward induction, consider the last stage: there the
player who would be asked to contribute would have an incentive to defect and not contribute. 
By doing so she could insure a payoff of at least 1, rather than 0.  The story from there unravels. 
So more than simple coordination is required: some sort of punishment is needed for deviation.  12

But without the possibility of enforced cooperation, the best that can be achieved are
uncoordinated strategies with some proportions contributed, and the residual withheld. 

Expansion #2: The Continuous N-PD

Are there parallel conditions
which insure that full and
universal contribution, rather than
an interior solution will be the
social optimum for a continuous
n-person PD (N-PD)?  And if
there is an interior optimum, can
we characterize some of its more
general properties and their
implications for empirical
situations?  

To answer these questions, let
us sketch the general linear N-PD
using the notation used above. 
Suppose there are n+1 individuals
involved in a linear N-PD and
each player has 1 unit of resources - any proportion of which can be contributed or not.  We
represent the payoff to any individual as a function of the aggregate choices of the n others in
Figure 2,.  There we have labelled the payoffs associated with the four corners (contingencies
under which the individual in question contributes all or none of the resources available) with the
traditional symbols T, R, P and S.  Although the letters T, R, P, and S in the linear N-PD occupy
the corners as they do in the continuous 2-PD, they must be somewhat reinterpreted.  They
represent the payoff to one individual when she allocates all resources to either cooperation or
defection and all others do one or the other.  The first two properties of the 2x2 PD are reflected
in the facts that the line representing the payoffs for defection is always above the line for
cooperation and that R > P.  Traditionally, social welfare, W, is a weighted function of each
individual's welfare.  To keep the discussion simple, and parallel to that of Schelling (1978, p.
218), we assume symmetry, in resources and tastes, as well as an equal weighting (i.e. utilitarian)
of the individuals.  Thus armed, we can calculate the group's maximum welfare for a generalized



     13/  This is possible because with our symmetry conditions all the
individual payoff functions are identical and the group welfare function is
utilitarian.
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(4) Group W elfare

(5) Optimal allocation to 
cooperation in linear N-PD

linear N-PD.  The social welfare of the group can be expressed as a function of one individual's
strategic choice of contribution level along with the aggregated contributions of all other players. 

Let us now characterize the situation in which the group optimum is not a corner solution
involving full and universal contribution.  As a start, let us try to find the conditions under which
an interior solution based on symmetric play can do better for the group than a corner solution.  

First note that we can calculate the proportion of the group assets which should be
contributed to attain a welfare maximum by differentiating the group welfare function, Equation
4, with respect to the proportion allocated to cooperation (k/n).

That maximum will appear the same whether it were calculated from an assumed equal
contribution by each member of the group or as the mean level of contribution needed to support
the maximum group welfare.   But note that we are not interpreting the results as based on13

symmetric donations but rather as based on the mean level of contribution needed to support the
maximum group welfare. 

Let us start with the assumption of symmetric levels of contributions and let the total amount
contributed by the n others be k.  Then the per capita allocation of others is k/n where 0 < k/n <
1.  Now consider the welfare of the group viewed as a function of the strategic choice of the
remaining player.  Using the symmetry assumption the remaining player's contribution would
also be k/n.  This yields the following equation for group welfare when each player contributes
the same amount:

Differentiating the welfare function with regard to k/n and setting the derivative equal to zero
yields a solution for the optimum (non coordinated) per-capita contribution level:

Expression (5) specifies the conditions for optimal symmetric contributions in the N-PD.  To
identify the conditions that guarantee an internal optimum simply add the requirement that 0 <
k/n < 1.  Algebraically this reduces Expression (5) to the following inequality:  R-S < T-R (or 2R
< T + S).  This exactly mirrors condition (3) in the linear 2-PD.  The graphical interpretation is
that the slope of the defection line is sufficiently greater than the slope of the cooperation line to
support the inequality.  Although algebraic expression of the conditions for a non-coordinated
symmetric internal optimum in this case parallel those in the continuous 2-PD, the conditions
require reinterpretation.  We can, however, continue to interpret the result in terms of
externalities and internalities.  R-S can be seen to be the effect on (i.e. externality) one individual
who contributes fully when the rest of the group switches from fully contributing to non
contributing.  It is the maximum externality the group can impose on a fully contributing
individual.  T-R, on the other hand, is the increase in benefits (i.e. internality) which the
individual can obtain by defecting from a universal contribution situation while the rest of the



     14/  There is yet another interpretation of the condition which yields insight
into its ethical, and hence behavioral, impact.  The condition for a symmetric
internal optimum R-S < T-R  can be rewritten as:
 (R-P) < (T-P) - (R-S)
This expression has an intuitive interpretation.  R-P is the difference to one
player of all contributing and no one contributing.  T-P is the total externality
on one non-contributing player of all others switching from fully contributing to
not contributing.  R-S is that same externality on a contributing player.  Thus,
when the difference in the two externalities is larger than the difference
between the all-cooperate and all defect payoff to that player, there is an
optimum without full cooperation.  In other words, if the added reward to one
individual of a steep defect (relative to the cooperation) line is enough to
outweigh the punishment associated with moving from all cooperate to all
defect, a less than full cooperation optimum exists.  The limit of these
symmetric optima is the situation under which 2R = S + T.  In that special
case the symmetric optimum is attained when everyone contributes their full
endowment: k/n = 1.

     15/  This should come as no surprise.  After all, consider the discussion of
the social optima of the 2 person case above, and their associated footnotes
(4 and 10).  As in the previous discussion, only within the framework of
cooperative game theory, can the Paretian outcome be achieved.  In this case,
we will show that the solution will be for some to contribute fully, and others to
withhold any contribution.  The payoffs for the withholders will be calculated
by the proportion giving (i.e. some k, as in Figure 2,) from the PT function. 
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group continues to contributes fully.  It is the maximum internality the individual can get by
changing strategies.

In the continuous N-PD, R-S < T-R, implies that the maximum externality a fully
contributing player can experience from the choices of all others not to contribute (R-S) is less
than the maximum internality she can gain under the same circumstances by defecting (T-R). 
This maximum externality occurs when the individuals shift from universal full contribution (i.e.
on the cooperation line) to no contribution.  The maximum internality occurs at the right hand
side of the Figure 4$: the contingency under which others cooperate fully and are taken
advantage of. 

Note again, that with the assumption of symmetry, the first part of the expression (R-S) can
be reinterpreted.  To see this, notice that the slope of the cooperation line is simply (R-S)/n. 
Hence an incremental contribution of 1 by some other j yields an incremental gain of (R-S)/n for
i.  And since there are n others the total externality of this cooperation on all other players save j
is simply (R-S).  Thus in the N-PD the condition is similar to that in the 2-PD except now the
relevant comparison is between one player and all others.  For a symmetric optimum to exist
other than that of full cooperation it must be that for each player 1) the maximum externality she
receives from the cooperation of all others be less than the maximum internality obtainable by
her defecting; and similarly, 2) assuming an additive welfare measure -- the maximum total
externality produced by her actions on others be less than the internality gained by her own
choice.  14

Perhaps surprisingly, however, the internal maxima based on symmetric play are not the best
that the group can do!  It is not as good as some outcomes available with asymmetric play.   To15



The cooperators will receive the corresponding value from the SR function. 
Such an outcome is not available without binding agreements.
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Characteristics: 5 person symmetric PD with budget =
10. Contribution of 1 unit generates .4
units per capita.Optimal symmetric
contribution is .8. 

To show: Group payoffs are better when one gives
0, others all give 1 rather than when all
give .8  symmetrically.

CASE 1:  ASYMMETRIC COOPERATION
Player Gives Keeps   Payoff

1 10 0  16
2 10 0  16
3 10 0   16
4 10 0   16
5 0 10      42.67

Group Welfare (sum of payoffs) = 106.67 
CASE 2: SYMMETRIC COOPERATION

Player Give Keeps Payoff
1 8 2  20.026
2 8 2  20.026
3 8 2  20.026
4 8 2  20.026
5 8 2  20.026

Group Welfare (sum of payoffs) = 100.13

Figure 3: Illustration of Prisoner Dilemma with Internal Optima

see this one has only to delve a bit deeper into the interpretation of the condition permitting an
internal solution to be better than the corner solution.  Since the strategy lines diverge, the
marginal net valuation of a single defection is greater the larger the number of others who have
cooperated: with defection being the steeper, the further one moves to the right the greater the
value of a defection.  Hence, if an optimum level of cooperation is achieved via the fewest
number of cooperators, the remaining defectors have the most to gain by defecting.  Put another
way, for any fixed level of aggregate contributions, the maximum gain to defections is obtained
when as few individuals as possible contribute to achieve that level of cooperation.  To illustrate
the reasoning, note that if all individuals cooperated symmetrically with some proportion (k/n) of
their budgets, they would all be at the same abscissa (see Figure 2,).  Now if one individual (call
her j) shifted to contribute å more while the total contribution remained the same (i.e. others
offset this by contributing less), j would be facing a total contribution level of others lower than
previously.  Her welfare would be calculated to the left, at a lower abscissa.  But å to the left the
curves are closer together, and the area of welfare she loses is precisely the area between the
curves of width å as we move from k/n.  On the other hand, let i be a single individual who
makes the offsetting decreased contribution.  Then i gains the area of the slice of width å of the
difference between the height of the curves.  Since they are monotonically diverging, the
optimum is always when the defection is concentrated in a minimum number of individuals. 
That is, the optimum calls for outcomes of maximum inequality.

To illustrate, consider a
simple 5 person PD (see
Figure 2, Figure 3 ) with an
interior symmetric optimum
solution of k/n = .8.  For our
illustration we calculate the
value of T using equation (5),
and assign the parameters the
following values: S = 4, R =
20, P = 10.  Solving for T,
yields T = 42.67.  The game
can be characterized as having
an optimal defection of one
individual.  When one
individual defects in such a
game, the sum of payoffs is
about 6% higher than when all
individuals contribute to yield
the symmetric optimum. 

Characterizing N-PD's:
Symmetrically and
Asymmetrically Optimal N-PD's

We would characterize all linear, continuous n-person games with dominant defect strategies
which satisfy  R-S > T-R as Symmetrically Optimal N-PD's and all those for which R-S # T-R
as Asymmetrically Optimal N-PD's.  As we have defined them, an N-PD has a set of dominated
strategies which, were they chosen, would yield a Pareto optimal outcome.  An Asymmetrically
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Optimal N-PD still has dominated strategies, but universal selection of those strategies fail to
yield the social optimum.  Although the symmetric maximum of universal partial contribution is
better than full contribution, it is not the global optimum.  

An implication of this is worth pointing out.  The two classes of N-PD's respond differently
to analysis under impartial reasoning.  There are different ethical imperatives inherent in these
two classes of games. 

In a recent paper Frohlich (1992) argued that one can identify the normative imperative
associated with a rational self-interested play of the 2x2 PD by doing a type of thought
experiment: by playing the game from an impartial point of view.  This involves imagining what
strategy choice rational self-interested players would make in a stylized condition:  

Imagine each player to be faced with the task of choosing a strategy for one of the places
in the game with the knowledge that after the choice, each would be randomly assigned
the payoff associated with one of the two places in the game.  

This situation requires that the players give equal weight in their calculations to the interests of
both parties in the game.  It induces impartial reasoning.  Elsewhere (Frohlich and Oppenheimer
1992) we (and many others) have argued that decisions taken under conditions which induce
impartial reasoning have a claim to ethical validity.  In the 2x2 PD the incentive structure facing
the individuals when they play the game from an impartial point of view has a dominant solution. 
From an impartial point of view rational self interested players have a dominant incentive to
cooperate.  Thus, it was argued, the ethical imperative coming from rationality and self interest in
the traditional 2x2 PD is to cooperate.  

We might call the new game, obtained by playing the original game from an impartial point
of view, the impartiality transform of the game.  It was demonstrated in Frohlich 1992 that when
condition (3) does not hold in otherwise 2x2 PD's the impartiality transform of the PD does not
yield a dominant pure strategy of universal contribution.  What we have shown here is that this
reasoning can be extended to the continuous 2-PD and the continuous N-PD.  Thus in the
Asymmetrically Optimal N-PD an impartiality transform does not yield an imperative to
cooperate fully.  Rather, mathematically identifying the non-coordinated maximum yields only 1
solution: the imperative to contribute that amount which, if everyone else contributed the same
amount, would yield a constrained maximum.  But, as we have seen above, that is not the best
the group can do.  The Kantian imperative doesn't lead to a Paretian outcome.  Rather, the
asymmetric solution with a minimum number of individuals contributing to the point of the local
maximum and the remainder free riding would yield the social optimum.  That would have to be
generated by a coordinated strategy of contribution and could not be achieved by individually
independent applications of impartial reasoning.  

There are obvious implications of these options.  A solution such as (5) leaves one in a
Pareto inferior position: one which can be bettered by a choice of a mixed coordinated strategy. 
On the other hand, an asymmetric coordinated strategy to contribute will, in the end, select some
to free ride on others who are left "holding the bag."  Putting it other ways, equality of actual
burdens has its costs, as do Paretian goals when it is suboptimal for all to fully cooperate: the
first in the sum of the payoffs, and the second in the lack of equality of payoffs.  

We can further complicate the choice situation and follow Schelling (1973) in which each of
the n players have only an all or nothing choice about contributing their resource.  Such a game
can be referred to as a binary N-PD, and we can assume properties (1) and (2) to hold.  In this set
of games the importance of condition (3) and the distinction between what we would call the
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Binary Symmetrically Optimal N-PD and the Binary Asymmetrically Optimal N-PD
becomes even more important.  When choices are binary, the impartiality transform fails
completely to yield a dominant solution for the transformed asymmetrically optimal game.  It
does, however, imply a dominant solution for the transformed symmetrically optimal game.  This
can be interpreted as meaning that rational self interested individuals facing a symmetrically
optimal N-PD face an unambiguous moral tension.  They know what is right (the solution of the
impartiality transform) and they know what is in their immediate individual interest (the
dominant strategy of the game they face).  Individuals facing an asymmetrically optimal game do
not experience the same clear tension.  They still know what is in their immediate individual
interest (the dominant strategy of the original game).  But the impartiality transform of the game
yields no unambiguous moral imperative since it does not indicate whether they should
contribute - only what proportion of individuals should contribute.  Indeed, the social optimum
requires that some individuals not contribute!

Finally, to put some flesh on these theoretical bones it may be worthwhile pointing out some
empirical examples of possible Asymmetrically Optimal N-PD's.  If it is granted that the value
of a barrel of oil produced by OPEC rises as more and more members withhold their oil from the
market, and in addition the average cost of production declines for producers, then the OPEC
problem is potentially a game of this sort.  The slope of the defect line is steeper than the slope of
the cooperate line - reflecting the higher price to be paid by cooperating as oil prices rise due to
others' cooperation.  A similar example might be provided by a shared fishery.  Indeed any
common pool problem where the price of the product rises as a function of scarcity and
economies of scale obtain, would be subject to the same analysis.  Viewed from that perspective,
even the archetypical example of the medieval common, might, in some circumstances, be an
Asymmetrically Optimal N-PD!  It may require a far more sophisticated form of coordination to
achieve the best outcome than the simple imperative which treats individuals equally.
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Figure 4 Comparing the values of the mixed coordinated
and the mixed-proportion strategies

Appendix A

Proof that if T+S > 2R, the mixed optimal coordinated strategy M is larger than the best
mixed proportion strategy H

Consider Figure 4$.  The
intermediate line represents the
payoff to i of contributing 50% of
her potential contribution.  It is the
straight line which lies 1/2 of the
distance between SR and PT.  The
dashed line ST, on the other hand,
represents the payoffs associated
with the mixed coordinated
strategy.
To see that this follows from the
notions at hand, consider the
following conditions.

Suppose T + S > 2R. We can
determine whether the midpoint
on the line ST (M) lies above the
midpoint (H) of the line which
indicates the value to i of donating
1/2 when j does so also.  
M can be eMxp =re (sSse +d  Tas) /f2ollows: 

while H can be expressed as    H = [S + P + (R - S + T - P)/2]/2. 

Suppose H to be larger than M or: 

S + P + (R - S + T - P)/2 > S + T.

Simplifying yields R + P > S + T.  But given that R + P < 2R  this contradicts the initial
assumption: 2R < S + T, Hence M must be greater than H. 

Derivation of optimal mixed proportion strategy

Without loss of generality let each player's resources in a continuous 2-PD be set at 1.  Let k
be interpreted as the proportion of each player's resources allocated to cooperation.  The graph, in
Figure 2 can be used to represent the game in which conditions 1 and 2 are satisfied.  The
equation representing the social welfare W(k) of the two players, (assuming symmetry of utility
functions) can be written as: 

W(k) = {[S + (R-S)k]k + [P + (T-P)k](1-k)}*2 (6) social welfare

The quantity in the curlicue brackets is simply the payoff to one individual resulting from a
strategy set of both players contributing k of their resources.

The socially optimum amount of cooperation is identified by setting the first derivative of W,
in k, equal to 0.  The first derivative of (6) is derivable as: 



     16/  One immediate observation is that no such solution is possible when
the lines are parallel (since the denominator vanishes under that condition).
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(8) optimal allocation to
cooperation in a linear, 2

dW/dk = S + 2k(R-S) + (T-P) - 2k(T-P) - P (7) dw/dk

Setting (7) equal to 0 and solving for k yields (8):

The conditions required for an internal social optimum are that the solution for k lie within the
range 0 < k < 1 .   Imposing that condition and simplifying the expression yields the following16

condition:

T + S > 2R          (9) Condition for interior solution
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