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Paradox Lost:  
Explaining and Modeling Seemingly Random Behavior in Social Dilemmas 

Norman Frohlich, Joe Oppenheimer and Stephen Wendel. 
 
  Data have been collected from experiments on the theory of collective action for more than a quarter 

of a century. Applications of the basic theory have cast a good deal of light on a number of collective action 

problems, spawning a considerable and well known literature. Our attention here is focused on the underlying 

premise that guides collective action theory: that one can explain group (political) behavior using the 

workhorse behavioral assumptions of micro-economics, rationality and self-interest.  Despite various 

successes of collective action theory, its group-level analyses are undergirded by data that radically contradicts 

its theory of individual behavior. 

  This problem is not new: but it is much bigger than is commonly appreciated in the field.  In the 

applications to non-market behavior, and especially in applications of interest to political scientists, rational 

choice theory has not predicted accurately at the individual level.  Elsewhere, psychologists have chipped away 

at the simple rationality postulates with experimental evidence of preference reversals and more, using what is 

loosely known as ‘prospect theory’ (Kahneman and Tversky, 1979).  The fragility of preference stability in the 

face of framing and other contextual effects is well known.  Studies showing precisely this are now legion (see 

Quattrone and Tversky, 1988 for a fine if somewhat dated, review of the findings here).  Preferences have 

been found to be probabilistic (see Regenwetter et al., 2008), and subject to deep manipulation by framing 

effects.  Other experimentalists have identified limits to the assumption of self-interest.   So while the macro 

program of the theory has appeared to succeed, the micro foundations of this apparent success appears to be 

problematic.   

 Frohlich and Oppenheimer (2006) describe how individual contributions to the public good are often 

inconsistent over time, appearing to fluctuate almost randomly or chaotically across levels over sequential 

rounds in experiments.  Although they conjecture that individuals have complex context-dependent 

preferences, they neither tested their conjectures, nor did they develop a testable specification of the theory.  

Wendel and Oppenheimer (2007) showed that one could use agent based simulations to develop plausible 

specifications for a theory of complex context-dependent preferences that could generate aspects of the 
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patterns of contributions observed in the experiments.  They suggested how analyses of situations using such 

simulations could help investigate theories that one could then test in further laboratory settings.  They show 

that a substantial improvement in the fit with individual data is possible.  This paper builds on these previous 

two efforts.   

 Using a combination of formal deduction and agent based simulations, we argue that any theory of 

individual choice that accounts for the observed behavior of real people must 1) be premised on probabilistic 

choice, 2) have context dependent preferences, or responses, and 3) replace self-interested preferences with 

preferences that are, somehow, other-regarding.  Further, we establish a feasible model to explain behavior 

that preserves rational choice with preference theory, which can be expressed in terms of a differentiable, 

continuous utility function.  We conclude that evaluations of political institutions must be reformulated to 

take into account the new premises.  Conclusions of models of social choice and voting based on the 

traditional theories need to be amended, particularly where the conditions of traditional VCM experiments 

hold:  collective action situations in a novel context with little opportunity for learning or deduction about 

individual level intentions.1  But we do not preclude the integration of these models with a learning model 

that is built on probabilistic choice and other regarding behavior.  

 We begin by outlining the problem.  In Section 2, we describe the general conjectures developed to 

explain the observations.  In Section 3, we develop the model and discuss the results of the simulations.  

Finally, we discuss the implications of the findings and the procedures for the use of preference theoretic 

models in political science.  In the appendix we extend the 2 person proofs and analysis to 3 and n person 

cases.  

The Problem 

 The problems with the standard theory of collective action can be depicted quite simply.  At the bottom 

of the theoretical pyramid are a set of heavy duty working premises: Individuals are assumed to be rational and 

                                                           
1  In many contexts, such as markets, competitive elections, military tactics, etc. in which, the traditional 

model performs admirably. 
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self-interested with non-probabilistic preferences and have no explicit response to the behavior of others.  Each of these core 

assumptions has been subjected to significant experimental and theoretical critique.   Work to refine the 

assumption of rationality, defined as having and exercising the ability to choose the best alternative, has 

extended from bounded rationality (Simon 1947, 1995;  Lindblom and Cohen, 1979; Zeckhauser and Shaefer 

1968) to broader work on whether consistent maximizing, bounded or not, might not be a part of human nature 

after all (see the good summaries of the findings in Rabin, 1998; Quattrone and Tversky, 1988; Grete and 

Plott, 1979; Simon, 1986; Tversky and Kahneman, 1986; as well as Shafir and Tversky, 1994).  A second 

premise of most rational choice models, self-interest, appears to be relatively robust in the market contexts to 

which the ‘standard theory’ had originally been applied.  But as rational choice theory was applied to areas 

ever more distant from markets, the assumption of self-interest proved more problematic. (See Frohlich and 

Oppenheimer, 1984, 2000; Fehr and Schmidt, 1999; Cain, 1988; Cox et al., 2001; Ahn et al., 2003; and a 

variety of dictator experiments. The literature is reviewed in Roth, Alvin, E. 1995.)   

 These critiques provide some insight into a well studied macro-failure of collective action theory.   When 

Olson (1965) boldly described the collective action problem in rational choice terms, he provided an 

explanation for why groups of rational self-interested individuals often failed to act to achieve an attainable 

group benefit.  The empirical tests of Olson’s insights, first in the field (see for example the discussion in 

Baumol and Oates, 1979), and subsequently in the laboratories (Ledyard, 1995, is a fine starting point) failed 

to bear out this drastic, and pessimistic corner result of non-contribution to group goals.   In ‘voluntary 

contribution mechanism’ experiments (VCM’s), which test contributions to public goods in repeated plays, 

the main reported results found from the experiments can be characterized as  

1.  significantly higher group contributions than the theory predicts;   

2.  a decline in group contributions over time (roughly from 40% to 20%)  

3.  a level that never approaches the corner solution of zero contributions (Ledyard, 1995). 

 Looking at summaries of group behavior over time gives one hope that the theory is partially supported 

by the data.  Often the analysis stops at that point: research question asked, test designed, completed and 

reported.  But all of the experimentalists have micro data: data about the choices of individual subjects in their 
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experiments.  And at that level, the level the theory is built upon, the theory’s performance is abysmal, but this 

is basically unreported (see Frohlich and Oppenheimer, 2006).  Of course, there is much more noise in the 

data at the individual choice level than at the aggregate group level.  And, it is natural that not all of this noise 

is acknowledged.  How that noise may reflect complex individual behavior; and how that behavior might 

relate to the foundational premises discussed above is the subject of this paper. 

 With these general musings in mind we begin rethinking the premises of our arguments.  We start by 

examining some data.  

Some Preliminary Evidence: Micro-Data and Collective Action  

Consider a typical VCM experiment conducted by the authors (e.g., Frohlich and Oppenheimer, 1996; 

Frohlich and Oppenheimer, 2003), with the parameters and results given in Table 1.2  The size of the group is 

5, and each individual is endowed with a budget of 10 and must decide the proportion to be allocated to a 

group good that yields a return of 40% to each individual.  The decisions are repeated (with the same group) 7 

or 15 times (depending upon the particular experiment).3  The standard theoretical prediction from the theory 

of collective action, is that individuals will choose their dominant strategies: that of giving nothing (top row in 

the table).   

 {Table 1 About Here} 

If individuals behaved according to standard assumptions of rationality and pure self-interest, their 

motivation to contribute can be formally described as in the following equation:  

   Ui(Xi,t) = 10 - .6Xi,t + 1.6Y~i,t  Self interested utility function (1)  

In this series of experiments, each individual (i) has an endowment of 10, and is trying to maximize the 

function Ui(Xi,t) by determining Xi,t, the level of the contributions in the current, tth round. Y~i,t is the average 

                                                           
2 T.K. Ahn has helped pool together the data from many of the VCM experiments and very kindly made this 

available to us.  We have examined all of this data.  All of our observations that we report below regarding our 

data hold in the larger set. 

3  The subjects don’t know when the experiment will end. 

Paradox Lost            Page 4 



contribution level of the other four players.4    The utility maximizing level of this function is straightforward: 

Xi,t equals 0 for all players and all rounds.  

 Non-cooperative game theory indicates that other equilibria can be sustained (i.e., the folk theorem), but 

at least when the experiment is designed so that individual contributions aren’t identifiable, the non-

cooperative Nash outcome of all playing their dominant strategy is most compelling on theoretical grounds.   

Indeed, it is the standard prediction for models of n person PD games.  And as noted above, a standard 

experimental result is getting higher levels of contributions, which decay somewhat over time.  Without some 

further ‘bridge principles’ (Hempel, 1965) the theory is in trouble (Green and Shapiro, 1994).  

Existing Micro-level Hypotheses for Aggregate Responses 

 Varying hypotheses have been put forward to explain individual-level contributions to public goods. In an 

earlier work (Frohlich and Oppenheimer, 2006) we analyzed this literature and considered the logical 

implications of alternative theories.  Here, a brief summary should suffice to provide context.    Some say 

there are two or more types of individuals: some give and some don’t.  Is it that, for example, 70% say, “Not 

me!  I’ll be no one’s fool” and 20% say, “Yes, count me in!”  And maybe some individuals (e.g. 10%) slowly 

learn and hence move from the count me in to the not me posture?  Perhaps there are just these two basic 

types and the learners: the rational egoists - equilibrium playing self-interested responses and the 

unconditional cooperators.  Such a conjecture can be tested: both of these sorts would have a response line 

over the rounds that would be horizontal or constant.  And the learners should gradually shift down over the 

course of the experiment.   Others say that those who don’t cooperate, and those who shift to non-

cooperation, leave a ‘meaningless’ tip, of say 15% so as to not feel selfish.  This too can, and has been, tested.  

In this case, the learning would leave a curve asymptotic to 15% rather than 0%.  Some of the conjectured 

types of contributors are illustrated in Figure 1.   

{Figure 1 About Here} 

                                                           
4  Individuals were informed of the average contributions of the others at the end of each round of decision 

making. 
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 Other individual-level behavioral patterns have been conjectured to generate these aggregate results.  

There may be conditional cooperators as conjectured by Rabin (1993) and Cain (1998) - individuals who are 

learning, or trying to get something going by signaling, or trying to contribute when it could make a difference 

(and their lines of behavior might look quite different in this graphical space). Perhaps some may even be 

trying to react to others’ non-cooperativeness: attempting a punishment by withholding contributions, 

although in this simple VCM design there is no way of directly targeting punishment at a particular individual 

(see Ostrom et al. 1991 and 1992). 

 The graph in Figure 2 displays some typical results for five groups (aggregated) over the 15 rounds of 

repetitions, along with a prediction of learning behavior.  The example from an actual data set (blue line) does 

not conform to the pure self-interest prediction (which would be a straight line along the X axis) but does 

come quite close to the conjectured learning (represented by the red line) and is  typical of results in 

experiments of this type.  So what does this mean for the various conjectures?   

{Figure 2 About Here} 

Micro-level Hypotheses for Individual Responses  

 While the micro-level hypotheses could have produced observed aggregate behavior reasonably well, they 

flatly fail to conform to observed individual level behavior.   A cursory examination of the individual level 

data shows that no one is an unconditional cooperator (at any level, including the notion of a ‘steady tipper’).  

Very few (fewer than 10%) are purely self interested and they are the only ones who appear to have 

unconditional behavior.   Figure 3 presents sample individual level data.  The problem is that behavior of 

virtually everyone is erratic.  We can note that there are 1) no other simple non-conditional players (that 

always give a set amount) other than those that give 0; 2) looking at the 3 representative graphs in Figure 3 the 

patterns of behavior do not appear to be easily decipherable into a simple aphorism, such as either reflecting 

‘learning’ or conditionalized behavioral responses to the behavior of others.  Indeed, we could have put up 

thousands more such graphs: all showing jagged responses, but these illustrate the problem: the individual 

behavior appears to be random or chaotic.   

{Figure 3 About Here}  
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 If most everyone is behaving erratically, what is driving their behavior?  Many conjectures are possible.  

Inconsistency can stem from erratic learning, complex interactive cuing among the subjects in the 

experiments, general instability of preferences, a lack of care in the decision making, or some other violations 

of rationality and/or self-interest.  Perhaps Charles Plott’s observation is appropriate “things are just too 

complicated at the level of the individual.”5   We clearly have behavior that is varying in a seemingly erratic, if 

not random fashion: perhaps it is responsive to the ever changing decision environment facing the individual.   

 How can we explain such fluctuations and inconsistency?  Do we have to give up the rational choice 

assumptions?  Can we explain it as a reflection of the responses to the behavior of others in the group?  And 

if so, what is that response function like?  In previous research (Frohlich and Oppenheimer 1996; 2006), we 

considered these larger issues of rational choice theory and individual level behavior, and performed statistical 

analyses on the experimental data against existing theories of individual-level behavior.  We looked at the 

effects of conditionalized behavior such as signaling and negative reactions to others’ low contribution rates 

statistically, finding that self-reported concerns for both equity and group benefit are strong predictors of (higher) 

contribution levels in these VCM experiments.  Those two elements of other regarding behavior explained 

more than 40% of the variance in contributions on their own (Frohlich and Oppenheimer, 1996).  Those 

findings are supported by authors such as Gunnthorsdottir, 2001, who also find differences in personality, or 

values, between free-riders and cooperators.   We concluded that line of argument with a discussion of how 

such context dependent behavior provided a promising route of analysis at the individual level.  However, we 

developed no specification of what such a model would entail. Here, we apply those considerations to a set of 

specific models discovered through a process of simulation-enabled theory development (Wendel and 

Oppenheimer, 2007).   

                                                           
5  In personal conversation in with Professor Plott, at an NSF funded conference (at the University of 

Indiana, in January, 2003). The NSF Conference, featuring attendees including John Ledyard, Elinor Ostrom, 

and John Walker, was organized to analyze the unexplained individual-level behavioral patterns underlying 

this paper.  
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The Conjectures 

 How to generate erratic responses, when the basic environment (as in ‘The Experiment’) is a constant, is 

the central question at hand.  Clearly, if the response is ‘rational’ (i.e. reflective of preferences held by the 

individual) then something must be triggering the changes.  The obvious suspect is the behavior of others.6  

In other words, we begin by assuming a reactive utility function that incorporates the behavior of others in 

one’s evaluation of one’s own behavior.   One problem with this sort of answer is: how to specify the 

relationship between choice and preferences.  To assist us we combine traditional mathematical deduction 

with agent based modeling (initially explored in Wendel and Oppenheimer, 2007) to grapple with the complex 

responsive, iterative, behavior.  

Other-regarding Behavior  

 We begin by making more specific the decision environment faced by the individual.  Equation 1 

reflected the experimental setting as viewed through the traditional lens of rational self-interested behavior.  It 

did not encompass possible group dynamics.  In the laboratory, after the first round, each individual is faced 

with a decision environment that contains actual people and each has to respond to the decisions of the other 

individuals.  Specifically, in our experiments, as in most other VCM experiments, each subject knew the 

aggregate behavior of the others in the group after each round, prior to making a decision for their 

contribution in the subsequent round.  Presumably this continually changing situation (information about the 

aggregate behavior of others and of one’s own historical behavior) leads to changing responses.  Of course, 

this wouldn’t happen if the individual were motivated by self-interest only, for then she would just never 

contribute, regardless of the behavior of others.  Similarly, an individual who contributes, regardless of the 

behavior of others, will not be affected.  But, as we indicated above, there are no unconditional givers and 

there are mighty few purely self-interested types out there.  

                                                           
6   To keep the story manageable, and as a first approximation we will presume the individual always keeps in 

mind only a one-round history. 
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INTERACTION OF SELF WITH OTHERS:  To make sense of and to model these patterns of reaction, we 

need a few more variables.  After round t -1, individual i makes a decision about what to contribute (Xi.t) given 

the average donations of others (Y~i,t-1) (see footnote 4), and herself (Xi.t-1).  Individuals compare their effort 

with that of others in the group.  In this comparison they can discover that their contribution is greater, equal 

to, or smaller than the average contribution of others.  Finding themselves giving more than others something 

like a sense of justice or fairness (as evidenced in Frohlich and Oppenheimer, 1996) may well be expected to 

lead to a feeling of frustration, or anger, that others aren’t sharing the burden proportionately.  Similarly, 

finding herself relatively less generous than their fellows can lead the individual to feel guilty regarding her 

smaller contribution.  There are many conjectures already in the literature regarding how one responds to the 

behavior of others.  These can be expressed generically without being precise about their content.  Label the 

current round as t, and the previous as t-1.  Then we conjecture that the individual’s current payoff 

calculations are a function, f, of both her previous behavior and the previous behaviors of others and that 

these behaviors impact on the player’s current contribution level.   

     Ui(Xi,t) = 10 - .6Xi,t + 1.6Yt + f(Xi,t-1, Yt-1)* Xi,t    other-regarding utility function (2a)  

 What are reasonable properties of this function f ?  Most experimentalists (see Fehr and Schmidt, 1999; 

Janssen and Ahn, 2006; Cox et al., 2001; and Charness-Rabin, 2002 for a few examples) agree that people 

want to be treated equitably.  They get more upset (i.e. they care more) about being wrongly taken advantage 

of (i.e. when Xi,t-1 > Yt-1 than they care about being wrongly advantaged (when Xi,t-1 < Yt-1).  In the VCM 

decision situations, this would mean that we want f  to take on values that reflect the difference in the giving 

patterns of the group and the individual or Xt-1 - Yt-1.  The effect of f should be larger when X > Y than when 

Y > X.  Further, we would want the response to monotonically increase as the difference between X and Y 

increase.  Although there are many possible ways of getting these properties, below, we accomplish them by 

letting f be a function (Ys - Xs) when Y > X, and by (Xs* - Ys*) when X > Y, presuming that s* ≥ s, and 

specifying that s > 1.  

ALTRUISM: But why would other-regarding behavior only exhibit itself in response to the relative giving of 

self and others? If one relates to the group and its behavior, might not the individual care about the quality of 
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the group outcome for all the participants, rather than just for herself?  That is, a second form of other-

regarding behavior, we here call altruism should be considered.7  This was also evidenced in Frohlich and 

Oppenheimer, 1996.  Since any contribution by the individual helps the outcome for the group, we can 

capture altruism with an additional function that reflects an additional utility going to i for contributions 

which increase the others welfare: g(Xi).8  Here g would be increasing in Xi. Adding this term for altruism to 

the equation for other-regarding behavior gives us: 

 Ui(Xi,t) = 10 - .6Xi,t + 1.6Yt + g(Xi,t) + f(Xi,t-1, Yt-1)*Xi,t   Altruistic & other-regarding utility function  (2b)   

 Although these changes could lead to less constant behavior, none of this is likely to lead to the typically 

erratic, jagged type of responses displayed in Figures 3.  In our current abstraction, everyone has an incentive 

to move toward the average response in the first round, although to different degrees.  Hence one would 

expect a relatively quick dampening of the erratic behavior.  We are not likely to see the sorts of continual 

flailing about in response that are reflected in the graphs of the behaviors of actual experimental subjects.  

Probabilistic Response  

 The notion that one has a specific value for different outcomes is a basic presumption of traditional utility 

theory.  Traditionally, theorists developed a non-probabilistic theory of choice: if i chooses a over b, it is 

because aPib.  Such a ‘certain’ tie of choice to preference leads to knife edge results.  When b becomes 

                                                           
7  Altruism is defined as placing a (positive) value on the welfare of others, even when there is no direct feed 

back to you of that welfare.  There is a big literature now on the nature and form of altruism.  It is a topic 

Frohlich and Oppenheimer have worked on for years, beginning with Frohlich 1974; followed up by Frohlich, 

et al.  1984, 2001, and 2004.  Others have worked even earlier on these problems.  See, for example Valavanis, 

1958. 

8  Expressing altruism this way avoids a number of nuances.  For example, if one only cares about the quality 

of the group outcome, rather than one’s own part in it, then the donations of others can be a perfect 

substitute for one’s own contribution.  Caring about one’s own giving is often attributed to a ‘warm glow 

effect.’  For purposes of simplicity, we don’t bother with such distinctions here. 
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preferred to a, behavior shifts completely.  The preferences of individuals are presumed to be stable, and 

unique.   

 But modern theories of memory and recall support a probabilistic theory of choice.  These theories 

attribute storage of an experience to memory to the value that the experience has.  One stores, and then can 

remember things precisely, because they have some value (Edelman, 1992).  Most items are remembered in 

multiple contexts, and hence with differing values.  And as one recalls an item, one brings up the attached 

memory and values.  As Damasio (1999, 163-64) puts it: 

 . . (T)he memory of . . . (an) object has been stored in a dispositional form.  Dispositions are records 

which are dormant and implicit rather than active and explicit, as images are.  Those dispositional 

memories of an object that was once actually perceived include not only records of the sensory 

aspects of the object, such as the color, shape, or sound, but also records of the motor adjustments 

that necessarily accompanied the gathering of the sensory signals; moreover the memories also 

contain records of the obligate emotional reaction to the object.  As a consequence, when we recall 

an object . . . we recall not just sensory characteristics of an actual object but the past reactions 

(emphasis added) of the organism to that object. 

So the valuations have a distribution, and are context dependent in complex ways.  Such complex valuations 

as are embedded in these compound memories involve non unique elements, and what is recalled by any 

trigger is likely to be probabilistic in details and valuation.  And we argue, that to avoid clearly unsubstantiated 

predictions of individual behavior such as smooth learning, early convergence, or purely oscillating response 

functions in these voluntary contribution mechanism experiments, it appears that we need probabilistic 

response, and hence probabilistic choice, functions.  It may not be that god plays dice but we do.  Equation 

2c illustrates our belief that the response function relating to a sense of justice or unfairness is the element 

most likely to be subject to probabilistic fluctuation.  After all, it is inherently reactive to the relative behavior 

of others.  That behavior is subject to the greatest ambiguity.   We presume that the underlying valuations of 

the monetary returns and of basic altruism are not subject to probabilistic fluctuation.   

 (Xi,t) = 10 - .6Xi,t + 1.6Yt + g(Xi,t) + ρ (Xi,t-1, Yt-1)*f(Xi,t-1, Yt-1) *Xi,t  Altruistic & other-regarding utility (2c)   
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Non-linear Valuations 

 If we are to identify optimizing behavior on the part of individuals that is responsive to the factors in 

question, and not simply a corner solution of contributing all or nothing, we must introduce some non-

linearities into the utility function.  One traditional way of doing this in public goods situations is to introduce 

a squared term in the valuation function of the public good.9  This is not plausible in an experimental context 

in which the public good is actual monetary payoffs over a relatively small range.  However, Kahneman and 

Tversky (1979) have shown that losses, even small ones from a status quo, are felt more strongly than could 

be represented by a linear utility function.  Therefore, to model contributing behavior that is not restricted to 

corner solutions, we introduce a quadratic loss term in the contributions.  

(Xi,t) = 10 - .6Xi,t + 1.6Yt + g(Xi,t) + ρ(Xi,t-1, Yt-1)*f(Xi,t-1, Yt-1) *Xi,t  -h(X2) Altruistic & other-regarding utility function (2d)   

The Model 

 We now put flesh on these presumptions.  Begin with the model minus any probabilistic term. 

Optimization takes place after it has been determined whether how one’s contribution compares with the 

average of others in the previous round.  Using the parameters from ‘The Experiment’ it is captured in 

equation 3.  

 To discount the response to guilt (when Y>X), relative to anger (when X>Y), we use a parameter, b <1 

in the utility function f  .  To have the utility function vary so as not to produce corner solutions, we add a 

final term (-(Xi,t)2/2) to represent the intensity of the loss associated with contributing X.   

 Then, the value to i of contributing X is different when i contributes more than the average than it is 

when i contributes less.  In the latter case, when others gave more than the individual, the equation becomes:    

Ui(Xi,t) = 10 - .6Xi,t + 1.6Yt + ai(Xi,t) + b[(Yt-1)s - (Xi,t-1)s ]*Xi,t - (Xi,t)2/2   The value of giving when Y>X (3)  

i will choose an amount to give that will maximize her payoff given the valuation of Ui(Xi,t).  That is, we can 

identify this maximizing contribution by simple differential calculus.  Using the first derivative, to solve for an 

optimal X, we get:  

                                                           
9   For a typical recent example, see Arifovic and Ledyard, 2008. 
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  Xi,topt = - .6 + b[(Yt-1)s - (Xi,t-1)s] + ai     The optimal value to give when Y>X   (4)  

 And when others have given less than i, this yields  

Ui(Xi,t) = 10 - .6Xi,t + 1.6Yt + ai(Xi,t) + [(Xi,t-1)s* - (Yt-1)s* ]Xi,t - (Xi,t)2/2  The value of giving when X>Y (5)  

The optimal X then is determined by:            

  Xi,topt = - .6 + (Xi,t-1)s* - (Yt-1)s*  + ai     The optimal value to give when X>Y   (6)  

 Equations 4 and 6 provide our benchmark model for non-probabilistic choice, which, because of 

mathematical and conceptual simplicity, we will analyze along side the more sophisticated probabilistic choice 

model.    

 To deal with probabilistic choice, we need to discuss the shape of function ρ that determines the 

probability.  We believe that the perturbations are coming about from the reaction to the difference between 

one’s own and others’ behavior.  That means, we need to map the probability of response changes (ρ) to the 

changing differences in behavior.  Obviously, we want ρ to be monotonically related to the differences in 

behavior: the bigger the gap, the more certain the response. In other words, we can write the probabilistic 

response function as:  

Ui(Xi,t) = 10 - .6Xi,t + 1.6Yt + ai (Xi,t) + ρ(Xi,t-1s* - Yt-1s*)*Xi,t - (Xi,t)2/2  The probabilistic value of giving when X>Y (7)  

 But even then, we need to posit a shape for the probabilistic function.  Besides having a positive slope as 

a function of X-Y (monotinicity), what else might we consider?  We have made the judgment that our first 

best guess is that the response function is likely to be a sigmoid function (i.e. S shaped: as in Figure 4).  Such 

functions are rife in many ‘natural’ events, and since we believe we are dealing with a ‘natural response’ chose 

this form as a reasonable starting point.  The functional form of a sigmoid curve responding to the difference 

between X and Y is: 

 ρ = -h/(1+e[(-|X-Y|)/k])   A Sigmoid response function (8)  

{Figure 4 About Here:  Sigmoid Curve} 

 In the graph, h is -1 and k is one.  We want the value of ρ to be zero when there is no difference between 

the individual and the average group behavior, so we need to ‘center’ the function around zero which is done 
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by adding ½ to the function.  A larger h would give a bigger ‘height’, and a larger k would give a bigger 

‘stretch.’  For example, if h=-2, the function goes from -2 to 0.  And with k=1, rather than 3, as in the 

diagram, the curve would acquire a range of -5 to + 5 to retain its current form.  We have set k = 3 so that the 

response is close to a constant after the edge of the feasible range is hit.  In other words we have to set the 

valuations of some of these variables to insure that the curve generates responses in keeping with the nature 

of the decision problem the individuals confronted.  With this function, it should be noted, there is no 

difference between the anger and the guilt in the inequality aversion portion of the utility function.  That 

asymmetry would here be taken into account by the ‘b’ term in equations 3 and 4.10  Setting ‘b’ so that anger 

is about 6 times stronger than guilt as a motivator, generates the results that we show below but sensitivity 

tests were run that show that over a wide range of values, the specific value of ‘b’ makes little difference to

results.  On the other hand, the model is now close to intractable analytically.  To handle the complications 

that have been added requires an increase in calculating power: one achievable by agent based modeling.  

 the 

Results 

 Our analysis proceeds in two parts. First, we consider the logical properties of the non-probabilistic utility 

function, under the analytically tractable circumstance of two competing players.  Second, we delve into the 

full system of five players, under the deterministic and probabilistic model variants, with a set of simulation 

models.  Finally, the simulation models allow us to explore alternative specifications of the model for rival 

hypotheses (Wendel and Oppenheimer, 2007).  Both the formal and the simulation analyses, follow directly 

from the VCM lab experiments.     

Formal Analysis:   

                                                           
10  Of course, a slightly different psychological assumption would substitute a ‘b' in the top or bottom portion 

of the sigmoid function so as to distinguish the probabilistic response to the behaviors, rather than the 

valuation itself.  The literature on inequality aversion, however, suggests that it is the valuation itself that 

changes (Fehr and Schmidt, 1999). 
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 First, we examine the non-stochastic, individual optimal contribution function from equations 4 and 6.   

We demonstrate that the entire family of related contribution functions, covering both our own model and 

numerous others conjectured in the literature, will necessarily settle down either into periodic oscillation or to 

a convergence to a constant level of aggregate giving.  Since neither of those conforms to the observed 

behaviors, we reject non-stochastic individual behavior as an assumption.   

 To establish this result of either periodic oscillation or convergence, we assume that the experimental 

subjects knew neither the identity of the other participants nor their individual behavior.  They knew only the 

aggregate behavior of the others in the group after each round.  

 To show this, start with the optimal contribution functions, Equation 4 and 6, provide further 

generalization into a wider range of VCM games, and reiterate the minimal assumptions made in the text.  

First, the linear rate of return on any contribution, rather than being .4, is specified as k.  As above, the 

individual’s current payoff calculations are a function, f, of the previous behavior of both her and others and 

are potentially affected by altruism: ai.  Yi,t is still the average of the contributions of others at time t.  In other 

words with the utility function for any giving of Xi,t  with non-stochastic behavior and other-regarding 

preferences would be a function of altruism, the difference between the subject’s and the average of others 

behaviors, the rate of return, and the contribution made.  With these generalizations on the optimal 

contribution function, we have:   

  Xi,topt = (k-1) + f [(Y i,t-1)s - (Xi,t-1)s] + ai    The optimal value (Y>X or  X≥Y) (9)  

 Consider the beginning of the interaction.  All the participants have no behavior of the others to respond 

to.  We assume that in such situations, they make contributions as if there were no differences between their 

behavior and the behavior of others: (letting di,t = (Y i,t-1)s - (Xi,t-1)s) as if di = 0.  Call this contribution level of 

the individual, (k-1) + f [0] + ai,, that individual’s neutral contribution level.  We can note this as Ni.  Define 

function r, the reaction function, as f [di,t]-f[0]. Rewriting equation 9 using this notation we have:  

  Xi,topt = Ni[k, ai] + r[di,t]   Optimal contribution function, in terms of neutral contribution level (10)  

We will want to begin each player with this neutral contribution level.  Of course, not all individuals will have the 

same Ni.  So there will normally be a gap between neutral contribution levels of any participant i and the 
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average of the others participating.  Call this gap G = Ni - No , where No is the average neutral contribution 

level of others. 

 Now, as above, we assume both that ∂Xi,t opt / ∂ai > 0 and that ∂Xi,t opt/∂di,t <0: that is, one’s response to 

doing ‘differently than others’ is to change the level of X upward if one gave less than others and downward if 

one gave more.  

 Assume that the individual, i, begins each round with “Ni” and then responds with a discounted value of 

the difference he found between his behavior and the average of others that he has observed in the previous 

round.  We will discuss the situation for two, and then 3, and then n person VCM games are given in the 

Appendix.  Since the participants in the experiments only knew the aggregate behavior of the others in the 

group after each round, the logic of the 2 person case will be somewhat useful in understanding the other 

cases.  

TWO PERSON CASE: We can show that the general solution of optimizing behavior under these simple 

assumptions, for a two-person game, will always either converge or oscillate.  This will be so regardless of 

each player’s response to differences in contributions (as long as ∂Xi,t opt/ ∂di,t  < 0), of each player’s ai, and 

regardless of each player’s initial contribution levels.  First note, with two players, i and j, Gi = - Gj .  The 

following table illustrates what happens if the response by the individual to the gap is linear, say the players 

respond to a gap with some proportional constant r (0>r>1): 

{Table 2 about here} 

 More generally, using G as the gap as experienced by i (that is G = Ni - Nj) in the first round, we can call 

the difference in the behavior between the two players as in any round t* (t* >1) dt*.  Then the behavior of 

individual i in the next round, t+1, is simply Ni - r*dt*.  Similarly, j will respond with Nj + r*dt*.11 This then 

lets us express dt* as follows:  

dt* = G(1 + (-2r)t - 1).   
t

t

=
∑

2

*

                                                           
11   Note one peculiarity of these assumptions is that the sum of the donations remains the same.   
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 It follows then that what happens to d (the difference) will depend upon what is happening with (-2r)t-1 as 

t increases.  Recall that r is presumed to be >0 and <1.  Hence there are three cases of concern:  

1. When r is precisely .5, then (-2r)t - 2 will oscillate between +1 and -1 depending upon whether t - 2 is 

positive or negative.  Hence the sum of these strings over intervals of t will oscillate between 0 and -1 

and the difference, d, will also oscillate between 0 and G.  

2. When r is less than half, then (-2r)t - 2 will getting geometrically smaller as t gets larger.  So we will be 

subtracting from G a sum that is growing quite quickly, but by less and less.  The value of the 

difference, d, will hence converge to some value between the two values 0 and G.  The closer r is to 

½ the closer the convergence value will be to ½ G.  When r is smaller, that convergence value goes 

up toward G and the convergence is quicker.  

3. When r is more than one half, then (-2r)t - 2 will grow as t gets larger.  And the sum of these will also 

grow, so that the difference, d, will be oscillating increasingly, until we reach the maximums possible 

(in this case 0 and E).    

 Similarly, we can express the behavior of individual i in any round t* (t* >2) as:  

Xi,t opt = Ni  - Gr(1 + (-2r)t-2 ). 
t

t

=
∑

3

*

 Here again, it is the performance of (-2r)t - 2 that will determine what is going on.  The same properties 

hold, although now, to show what the values will be as a function of N, G, and r, it is obviously slightly 

modified.  Thus, we have the same story.  The contributions will oscillate N and a lower number, when r = .5.  

Overall: 

1. If r > ½, the two players will oscillate with increasingly extreme contributions, until oscillating 

between maximum and minimum levels allowable given their assets.  G and r will both determine the 

speed of reaching those limits.  

2. If r < ½, then (-2r)t - 2 will getting geometrically smaller as t gets larger.  So we will be subtracting a 

sum from N that is growing quite quickly, but by less and less.  The value of the difference will hence 

converge to some value between the two neutral contribution levels.  More specifically, the two 
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contributions of each of the players will each steadily converge back toward a value of between their 

neutral contribution levels (Ni, j).  G determines the size of the oscillations.  ‘r’ determines speed of 

the convergence: the closer r is to .5 the longer it takes for the convergence to occur.  

3. Finally, if r = ½, the two players will continually oscillate between their neutral contribution levels 

and a level that is N - ½ G.  In other words, the oscillations will be between Ni and the average of Ni 

and Nj. Hence, if the other person has a higher N, the gap is negative, and the oscillation will be 

between Ni and ½ the way toward Nj.   

While started with optimal contribution functions 4 and 6, it should be noted that any function of the form 

given in equation 10 will provide similar results.   

 These results clearly indicate that a general family of equations, which follows directly from our own prior 

research and that of numerous other researchers in the field, is unable of generating the individual-level 

behavior observed in the labs, at least in the 2-player case.  Moving beyond two players analytically is much 

more challenging.  In the Appendix, we provide a similar but more detailed proof covering the n-person case. 

The results are analogous: either oscillating or converging rapidly.   In the next section, we pursue another 

route of analysis, directly simulating the 3+ person case in an agent-based model under a suite of reasonable 

parameter sets; as expected, oscillation or convergence ensure.   We then move on to the probabilistic model, 

which is intractable for analytic solutions, but amenable to simulation methods.  

Simulations:   

 First, we programmed simulated agents to follow (exactly) the conjectured non-stochastic behavior 

provided in equations 3 and 5.   The agents are embedded in an environment that mimics the experimental 

condition, in which a group of participants, i.e., agents, are each given their endowment at the beginning of 

each round, and then are allowed to contribute some or all of it to the production of a public good.  

Conceptually, the simulations consist of three parts: the VCM parameters (as used in the experimental studies 

and more specifically, starting with those displayed in Table 1), the motivational structure of the individuals 

participating in the iterated VCM game (as provided by equations 4-8), in which each player learns of the 

average contributions of the others from the previous round.  The simulation software also includes a set of 
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tools to visualize and record data from the game, and to explore the sensitivity of the model to its 

parameters.12  The simulation design provided the flexibility to simulate a wide range of alternative theories 

that might generate jagged contributions.13  Here we only focus on the components used in the theoretical 

models given above.  Other components used in sensitivity analyses will be discussed but not detailed here 

(but see Wendel and Oppenheimer, 2007).    

 In round 1, contribution levels are set by us.  We stochastically select starting values to both reflect typical 

patterns of human subjects and adjust agents’ altruism patterns to reflect this initial move.  At the start of each 

subsequent round, each agent receives information about the average contribution of the other agents in the 

prior round, if any.  The agents then maximize their utility (i.e. the equation being tested) over the range of 

potential contributions via a simple numerical approximation: one hundred evenly spaced contribution 

increments are evaluated in each utility function, and the contribution that generates the highest utility level is 

chosen.   All results have been archived.  

 In the stochastic models, individual runs are inconclusive on their own.  As it would be tedious to execute 

the software manually a sufficient number of times to generate meaningful results, we executed the simulation 

in batch mode across one hundred unique random number seeds.  The results were logged to a file and 

analyzed in the statistical package R.14  

   Sample results from the deterministic utility function agents are given in Figures 5-7; each of these graphs 

display behavior by 5 (simulated) individuals, or agents, making decisions in 30 consecutive rounds under the 

                                                           
12   The model was built upon the RePast Simphony agent-based modeling platform (Tatara et al. 2006), with 

subsequent elements programmed in Java. RePast provides helpful visualization and data logging tools. 

13   The previous paper (Wendel and Oppenheimer, 2007) gives the details of the alternatives that were 

considered as well as much of the logic for the rejection of many of the alternatives. 

14   This design is inspired by Catherine Dibble's concept of a "Computational Laboratory", which employs an 

agent-based model at the center of a larger process of sensitivity testing, optimization, and statistical analysis 

(2006). 
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conditions specified in Table 1.  They maximize their utility function as specified in equations 3 and 5.  Each 

agent is given a unique level of altruism that then generates a randomly set starting level of contributing.   As 

expected from our analytical solutions, we can get either oscillations or rapid convergence The selection of 

graphs here is made to show typical patterns; indeed, all agents under these circumstances generate simple 

oscillation or convergence to an equilibrium level of contribution.   

{Figures 5-7 About Here} 

 Without a probabilistic response, we thus get early convergence or continued periodic oscillations: 

simulated behavior that does not mirror the patterns of the data.  No real live subjects exhibit pure oscillation 

and very few even approximate oscillation.  Further, none of the subjects we have examined have exhibited 

behavior that converged to any value other than zero.  And not very many do that, either.  A final problem we 

have with the non-probabilistic models is a lack of general decline in average contributions over time.  

Although there are circumstances where this happens, it is not a ‘typical’ event in the simulations; it is typical 

for human subjects (compare Figure 2 with the current Figure 8).  In Figure 8, we display overlay the 

aggregate contributions of 8 separate groups of simulated individuals over time.  Note that half of them 

oscillate periodically, and the other 4 quickly converge to a non-zero sum. The lack of decline takes place even 

though there is a ratio of 6 fold in the anger versus guilt response.  

{Figure 8 About Here}  

 Adding a probabilistic response component provided in equation 8 above significantly changes the 

outcome.  Instead of oscillation or rapid convergence, we find patterns that more adequately reflect both the 

almost chaotic responses which were displayed in the behavioral graphs earlier (see Figure 3) and also the 

decreasing total contributions by group members (Figure 2).   These two features of both agent (Figure 10) 

and aggregate (Figure 9) behavior are shown in the graphs below.  Both were selected for readability (when 

the lines are too similar and overlap it can be hard to trace behavior) and are typical in patterning.  Figure 10 

shows the 5 agents of one group, with all the properties of Equations 7 (the utility function) and 8 (the 

probabilistic response function).  The very erratic behavior patterns of the real subjects now shows up as 

maximizing behavior with probabilistic response.  And Figure 9 has the properties of decreasing donations 
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over time, not declining to zero just as in the laboratory experiments.15  Earlier model explorations (Wendel 

and Oppenheimer 2007) included sensitivity analyses showing that these results are robust to wide variations 

in their parameters, including the initial contribution levels of agents, the weight and distribution of the other-

regarding component of the utility function, and the injection of individuals motivated by alternate utility 

functions (e.g., purely self-interested individuals).  Thus, while our analytical results thus indicate that 

deterministic preferences are logically insufficient to generate the observed pattern of behavior, the simulation 

experiments demonstrate that the theoretically appealing option of probabilistic, other-regarding preferences 

can, under the experimental conditions, generate the observed behavior. 

{Figures 9 and 10 About Here}  

Overview and Discussion 

 The results support a number of substantive conclusions that we, and others, have articulated for more 

than a decade concerning the lack of realism of the rational choice assumptions for the theorizing of public 

and social choice modeling of politically interesting phenomena.16  It appears that the presumption that each 

individual has preferences separated from the welfare of others is wrong: it doesn’t enable one to explain the 

facts.  Second, the notion that one’s behavior is deterministically set by one’s preferences appears wrong.  The 

results cast severe doubt on both of these traditional axioms of rational choice theory.  Indeed, the basic 

results (not the particulars of their functional forms) of Fehr and Schmidt (1999) and their conclusions 

regarding the weight of anger and guilt seem strengthened by our analysis.  We care substantially more that 

others do as much as we do, than we do about their doing more than we do.  

 Of course, the lack of fit of the most basic experimental data with the classic theory, as outlined in the 

first part of the paper, is a fundamental problem.  Putting the ‘excusniks’ (e.g. Milton Friedman, 1953) aside, 

                                                           
15  For each of the simulation models we ran, we did sensitivity testing over a range of parameters.  Most of 

this is outlined, with detailed results in Wendel and Oppenheimer (2007).  There we report results for groups 

of various compositions, various parameters values, etc.   

16   Again, the methodological implications are discussed more fully in Wendel and Oppenheimer (2007). 
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the severe lack of fit between reality and the quantifiable assumptions of a theory are always of concern in 

science.  Realism must play a role somewhere in the path that scientific inquiry carves out in its intellectual 

journey (see Nola, 2004).  Presumably the call of realism has been resisted because dealing with framing, 

probabilistic choice, and other-regarding preferences were thought to add too many complications to the 

calculations.  It was impractical to reconstruct the theory to conform to reality.  

 But what has been established here is that relatively simple fixes to the foundations can go a long way to 

repairing the structure, without giving up the calculating capability of the models.  Others have argued 

similarly (see, for example, Fehr and Schmidt, 1999; Rabin, 1993; Mackie, 2003; Ahn, et al. 2003; Frohlich, 

Oppenheimer and Kurki, 2004) in more limited fashions.  We have added three interactive elements: a notion 

of altruism (or concern for the group outcome), a notion of fairness toward self and the group, and a 

probabilistic element tying behavior to values for fairness, evaluated in terms of relative effort.   We have 

shown that incorporating the complexity of reality into the analysis can be done with little cost to calculability 

and yet can generate great improvement in the fit of the models to the non-market behavior at the individual 

level.   

 Few have argued that the normative prescriptions based on ill-fitting theories should be questioned and 

that there is a need to amend the foundational premises that yield the empirical anomalies (but see Mackie, 

2003; and Green and Shapiro, 1994 who led the charge).  However, the reader should  note that the wrinkles 

we have added are likely to change some of the normative implications of some of the models based on the 

older, basic rationality and self-interest assumptions.  Just as an example, consider the implications of 

probabilistic choice to spatial modeling of electoral competition.  Coughlin (1984) discusses the implications 

of probabilistic voting for political candidates.17 The major change in analysis is that electoral competition is 

                                                           
17   It must be said, however, that Coughlin indicates that the voter’s decision isn’t probabilistic, only that the 

politician presumes it is because of incomplete information (told to Oppenheimer in repeated conversations).  

Be that as it may, the implications that follow from his analysis hold true for probabilistic choice by the 

individual voter. 
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far more likely to lead to a ‘median voter’ result, and the result has easily interpretable analogues to the 

normative theory of utilitarianism (see Mueller, 2003, chapter 12).  Indeed, the electoral analysis results are far 

more optimistic than the traditional arguments that show the possibilities of cycles, and hence little normative 

interpret ability of electoral outcomes.18  

 We are certainly not asserting that the model we put forward and tested is the stopping point for 

development of an adequate behavioral theory.  Rather, we view it as a starting point: one that shows the 

elements that must be incorporated in any further theoretical work that is to be grounded in reality.  Others 

have already begun such work, and will certainly lead to a new foundation.19 

 As always in a productive moment for science, what is clear is not where we will end up, but the road that 

must be taken.  

 
18   The presumption that gives the probabilistic analysis normative power is that the movement of the voters' 

probabilities in their vote choices are normatively meaningful and comparable (again, see Mueller). 

19   For an example, consider the paper by Jasmina Arifovic & John Ledyard (2009).   They are integrating a 

probabilistic learning response, altruism, fairness of treatment of self, and in a model of behavior that should 

expand the possibilities of modeling these problems. 
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Appendix: Further Analysis of the Oscillation & Convergence Result Without Probabilistic Responses 

The Three Person Case --  With three, or more, individuals the differences each individual experiences are 

not the difference between herself and one other player.  Now it is the difference between the individual and 

the others in the group.  Again, we use our concept of the individual neutral contribution levels, depicted as N1, 2, 3.    

After the first round, where each participant will be giving their neutral contribution level, the initial 

difference between individual i’s contribution and the average of others is Ni - (.5)(Nj + Nk), which we can 

still refer to as Gi.  These differences will vary across individuals, but they will necessarily sum to zero.   

Using the following definitions: 

 Ni = Xi,topt[Y i,t-1=Xi,t-1] = (k-1) + f[0] + ai Neutral contribution level of player i  

 Gi = Ni - (.5)(Nj + Nk)         Gap between neutral contribution levels 

Based on these definitions, and equation 10, the following equations can be derived: 

 Gi + Gj + Gk = 0        Neutral contribution level gaps sum to zero 

 Xi,t = Ni – r(di,t-1)       Player i’s Contribution in round t 

 di,t-1 = Xi,t-1 - (.5)( Xj,t-1 + Xk,t-1)        Difference between player i’s contribution  



With 3 players, we can specify the maximizing contribution level in round t* with a model of behavior similar 

to the 2 person case: 

Xi,t* = Ni  - Gir + (-1)t-1(3/2)t-2(r)t-1 Gi. 
t

t

=
∑

3

*

Xi,t* = Ni  - Gir(1 + (-3/2r)t-2 ). 
t

t

=
∑

3

*

 Once again there are 3 ranges of the response rate, r, that determine the general shape of the responses.  

With two persons, the nature of the response pattern was determined by whether r was greater than, equal to, 

or less than ½.  In the case of 3 individuals, the response cut points depend on whether r is greater than, 

equal to, or less than 2/3.  When r = 2/3 the interaction will exhibit a steady state oscillation.  The oscillations 

will continually be between N and the average of the N’s that were contributed in the first round, paralleling 

the two person case.  When r < 2/3 the size of the oscillations dampens, and each participant’s contribution 

will converge toward a value below Ni - .5rGi when G is positive, and above that when G is negative.  The 

smaller r, the quicker will be the dampening.  And finally, when r > 2/3 the oscillations will get bigger, until 

they reach the maximum possible given the resources the individuals have available.  Again, the larger r, the 

faster would be the explosion in the oscillations.  

The General, N-person Case  --  The general, N-person case follows a similar logic.     

• For round 0, assume that each of M players starts at their Neutral Contribution Level: x1..M,1 = N1..M.     

• The resulting difference, di,1, between each player and that of the average of the others in round 1 is 

di,1 = Ni  - ∑ (Nj)/(n-1).   
≠ ij

• As before, we define the gap in Neutral Contribution Levels, Gi  (=di,1)   

• In any given round, t, observe that ∑
= M1..k

dk,t  = 0   

o di,t= xi,t  - ∑ ( xj,t)/(n-1)  
≠ ij
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o ∑ di,t= ∑ (xi,t  - ∑ ( xj,t)/(n-1) ) = 0 
= M1..i = M1..i ≠ ij

• In any given round, t, we now show that di,t= Gi - rdi,t-1 n/(n-1) 

o xi,t= Ni - r di,t-1   

o di,t= Ni - rdi,t-1  - ∑ (Nj - rdj,t-1)/(n-1)  
≠ ij

o di,t= Ni -∑ (Nj )/(n-1)  - rdi,t-1  +
≠ ij

∑
≠ ij

(rdj,t-1)/(n-1)  

o di,t=   Gi     - rdi,t-1  +r∑
≠ ij

(dj,t-1)/(n-1) +  r(di,t-1)/(n-1) - r(di,t-1)/(n-1) 

o di,t=   Gi     - rdi,t-1  +r ∑
= M1..k

(dk,t-1)/(n-1)             - r(di,t-1)/(n-1) 

o di,t=   Gi     - rdi,t-1  +r*0/(n-1)                         - r(di,t-1)/(n-1) 

o hence, di,t= Gi - rdi,t-1 n/(n-1) 

• Given that di,1= Gi , in any given round, t,   

o xi,t= Ni  - rdi,t-1   

o xi,t= Ni  - r(Gi - rdi,t-2 n/(n-1)) 

o xi,t= Ni  - r(Gi - r(Gi - rdi,t-3 n/(n-1)) n/(n-1)) 

o xi,t= Ni  - Gir(1 + ∑ (- nr/(n-1))h-2) 
= t3..h

 As in the previous 2 and 3 person cases, there are 3 ranges of the response rate, r, that determine the 

general shape of the responses.  With n persons, the response cut points depend on whether r is greater than, 

equal to, or less than (n-1)/n.  When r = (n-1)/n the interaction will exhibit a steady state oscillation.  The 

oscillations will continually be between N and the average of the N’s that were contributed in the first round, 

paralleling the two person case.  When r < (n-1)/n the size of the oscillations dampens, and each participant’s 

contribution will converge toward a value below Ni - .5rGi when G is positive, and above that when G is 

negative.  The smaller r, the quicker will be the dampening.  And finally, when r > (n-1)/n the oscillations will 
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get bigger, until they reach the maximum possible given the resources the individuals have available.  Again, 

the larger r, the faster would be the explosion in the oscillations.   

 



Table and figures 
 
 

Table 1: 5-Person Prisoner’s 
Dilemma (Showing Payoffs 
Only to One Player)  

Amount Given by Others 

1 Person’s Strategies 40 30 20 10 0 

give 0 26 22 18 14 10 

give 10 20 16 12 8  4 
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Table 2: The 2 Person Non Probabilistic Response Case 

Round (t) Xi,t = Player i’s Contribution Yt = Player j’s Contribution Difference 

0 0 0 0 
1 Ni Nj Ni - Nj = G i 
2 Ni - r(Gi) Nj + r(Gi) Gi - 2r(Gi) 
3 Ni - r(Gi - 2r(Gi)) Nj + r(Gi - 2r(Gi)) Gi - 2r(Gi - 2r(Gi)) 
4 Ni - r(Gi - 2r(Gi - 2r(Gi)) Nj + r(Gi - 2r(Gi - 2r(Gi)) Gi - 2r(Gi - 2r(Gi – 2r(Gi))) 
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Figure 1: Conjectured Types of participants  
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 Figure 2: Average contribution among 5 person groups in a ‘typical’ VCM experiment (blue) and 
behavior with ‘learning’ conjecture (red).   
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Figure 3: Typical High, Medium and token donor behavior over 15 rounds 
from experimental data.  
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Figure 4: Zero Centered Sigmoid curve
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Figure 5: Oscillation with Other-regarding Preferences Without Probabilistic Response 
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Figure 6: Oscillation & Convergence with Other-regarding Preferences  Without 
Probabilistic Response8
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Figure 7: Convergence with Other-regarding Preferences Without 
Probabilistic Response  

 

Paradox Lost – tables and figures         Page 39 



Figure 8: Total Group Contributions by Round Without 
Probabilistic Response  
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Figure 9: Total Group Contributions with Probabilistic Response
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Figure 10: Chaotic Jagged Behavior with Probabilistic Response  
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